Dear ImGui Bundle

1. INTRODUCTION

l.a. Bundled Libraries
l.a.i. Full list of included libraries:

Dear ImGui Bundle includes the following libraries, which are available in C++ and in
Python:

« Dear ImGui : Bloat-free Graphical User interface with minimal dependencies

« ImGui Test Engine : Dear ImGui Tests & Automation Engine

« Hello ImGui : cross-platform Gui apps with the simplicity of a “Hello World”
app

« ImPlot : Immediate Mode Plotting

+ ImPlot3D : Immediate Mode 3D Plotting

+ ImGuizmo : Immediate mode 3D gizmo for scene editing

« ImGuiColorTextEdit : Colorizing text editor for ImGui

+ imgui-node-editor : Node Editor built using Dear ImGui

« imgui_md : Markdown renderer for Dear ImGui using MD4C parser

« ImmVision : Immediate image debugger and insights

+ NanoVG : Antialiased 2D vector drawing library on top of OpenGL

« imgui_tex_inspect : A texture inspector tool for Dear ImGui

+ ImFileDialog : A file dialog library for Dear ImGui

« portable-file-dialogs : OS native file dialogs library (C++11, single-header)

+ imgui-knobs : Knobs widgets for ImGui

« imspinner : Set of nice spinners for imgui

« imgui_toggle : A toggle switch widget for Dear ImGui

+ ImCoolBar : A Cool bar for Dear ImGui

+ imgui-command-palette : A Sublime Text or VSCode style command palette in
ImGui

A big thank you to their authors for their awesome work!
l.a.ii. Key Features:
Works everywhere:

+ Cross-platform in C++ and Python: Works on Windows, Linux, macOS, iOS,
Android, and WebAssembly!

+ Web ready: Develop full web applications, in C++ via Emscripten; or in Python
thanks to ImGui Bundle’s integration within Pyodide

First class support for Python:
Published Jan 21, 2026

« Python Bindings: Using Dear ImGui Bundle in Python is extremely easy and

productive.

January 21, 2026 10of 76

https://github.com/ocornut/imgui
https://github.com/ocornut/imgui_test_engine
https://github.com/pthom/hello_imgui
https://github.com/epezent/implot
https://github.com/brenocq/implot3d
https://github.com/CedricGuillemet/ImGuizmo
https://github.com/BalazsJako/ImGuiColorTextEdit
https://github.com/thedmd/imgui-node-editor
https://github.com/mekhontsev/imgui_md
https://github.com/pthom/immvision
https://github.com/memononen/nanovg
https://github.com/andyborrell/imgui_tex_inspect
https://github.com/pthom/ImFileDialog
https://github.com/samhocevar/portable-file-dialogs
https://github.com/altschuler/imgui-knobs
https://github.com/dalerank/imspinner
https://github.com/cmdwtf/imgui_toggle
https://github.com/aiekick/ImCoolBar
https://github.com/hnOsmium0001/imgui-command-palette

+ Beautifully documented Python bindings and stubs: The Python bindings
stubs reflect the C++ API and documentation, serving as a reference and aiding
autocompletion in your IDE. See for example the stubs for imgui, and for
hello_imgui.

« Use it to create standalone apps (on Windows, macOS, and Linux), or to add
interactive Uls to your notebooks. Deploy your apps on the web with ease,
using Pyodide.

Easy to use & well documented:

« The Immediate Mode GUI (IMGUI) paradigm is simple and powerful, letting you
focus on the creative aspects of your projects.

- Easy to use, yet very powerful: Start your first app in 3 lines.

« Interactive Demos and Documentation: Quickly get started with our
interactive manual and demos that showcase the capabilities of the pack. Read
or copy-paste the source code (Python and C++) directly from the interactive
manual!

Always up-to-date:

+ Always up-to-date: The libraries are always very close to the latest version of
Dear ImGui. This is also true for Python developers, since the bindings are
automatically generated.

+ Fast: Rendering is done via OpenGL (or any other renderer you choose),
through native code.

January 21, 2026 20f76

https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/imgui/__init__.pyi
https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/hello_imgui.pyi
https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/hello_imgui.pyi
https://pyodide.org/en/stable/

1.b. Immediate GUI
1.b.i. What is an Immediate GUI:

An “Immediate Mode Graphical User Interface” lets you build user interfaces directly
in code. This keeps the Ul and app state in perfect sync with minimal boilerplate.

This approach is especially popular for quick prototyping and tools because it’s
intuitive, flexible, easy to maintain, and trivial to debug.

The example below shows a documented example to explain the Immediate Mode
GUI paradigm:

Python
from imgui bundle import imgui, immapp
counter = 0 # our app state

The gqui() function is called every frame, so the UI updates in real
time.

def gui():
global counter

anuar , o
] y 21, 2026 3 0f 76

The state of the UI is always in sync with the app state,
via standard variables: debugging UI becomes trivial!
imgui.text(f"Counter ={counter}")

We can display a button, and handle its action in one line:
if imgui.button("increment counter"):
counter +=1
Below, we can also set the counter value via a slider between 0
and 100
value changed, counter = imgui.slider int("Set counter", counter,
0, 100)

Run the app (in one line!)
immapp.run(gui)

C++

#include "immapp/immapp.h"
#include "imgui.h"

int counter = 0; // our app state

// The gui() function is called every frame, so the UI updates in

real time.

void gqui()

{
// The state of the UI is always in sync with the app state,
// via standard variables: debugging UI becomes trivial!
ImGui::Text("Counter =%d", counter);

// We can display a button, and handle its action in one line:
if (ImGui::Button("increment counter"))
counter += 1;
// Below, we can also set the counter value via a slider between
0 and 100
ImGui::SliderInt("Set counter", &counter, 0, 100);

// Run the app (in one line!)
int main(int, char **) { ImmApp::Run(gui); }

It produces this simple app:

anuar R o
] y 21, 2026 4 0f 76

Counter =56

Increment counter

55 set counter

Immediate Mode GUI does not mean that you cannot separate concerns!

You can still (and should) maintain a separate application state. The key difference is
that your GUI can interact directly with that state in a straightforward way, without
the need to maintain a separate Ul state or complex event handling systems.

1.b.ii. Dear ImGui:

The most popular Immediate Mode GUI library is Dear ImGui, a powerful C++
library originally created for real-time tools in game engines, now widely used in
many industries, with over 60k stars on GitHub.

Dear ImGui Bundle includes Dear ImGui plus many extra libraries, making it ideal for
rapid prototyping as well as building complex apps with advanced widgets, plotting,
node editors; in C++ and Python.

1.b.iil. Get started in no time with Hello ImGui and ImmApp:

With Hello ImGui and ImmApp (both included in Dear ImGui Bundle), you can create
a full-featured GUI application with just a few lines of code.

+ Hello ImGui is a library based on ImGui that enables to easily create
applications with ImGui. It handles window creation, backend initialization
(SDL, GLFW, etc.), cross-platform assets, docking layout, and more.

« ImApp (aka “Immediate App”, a submodule of ImGuiBundle) is a thin extension
of Hello ImGui that enables to easily initialize the InGuiBundle addons that
require additional setup at startup.

Hello World in 4 lines:

4 lines are enough to start a GUI application!

Python

January 21, 2026 50f 76

https://github.com/ocornut/imgui
https://pthom.github.io/hello_imgui
https://github.com/pthom/imgui_bundle/blob/main/external/immapp/immapp/runner.h

from imgui bundle import imgui, immapp

def qui():
imgui.text("Hello, world!")
immapp.run(gui)

C++

#include "immapp/immapp.h"
#include "imgui.h"

void gui() { ImGui::Text("Hello, world!"); }
int main() { ImmApp::Run(gui); }

A more complete example with plots:

The example below shows how to create a more complete application that uses an
add-on (ImPlot) for plotting data.

Python

import time
import numpy as np

from imgui bundle import implot, imgui, immapp, imgui_ knobs

Fill x and y whose plot is a heart

vals = np.arange(@, np.pi * 2, 0.01)

X = np.power(np.sin(vals), 3) * 16

y = 13 * np.cos(vals) - 5 * np.cos(2 * vals) - 2 * np.cos(3 * vals) -
np.cos(4 * vals)

Heart pulse rate and time tracking

phase = 0.0

t0 = time.time() + 0.2

heart pulse rate = 80

def qui():
global heart pulse rate, phase, t0, x, y

Change heart size over time, according to the pulse rate
t = time.time()

phase += (t - t0) * heart pulse rate / (np.pi * 2)

k =0.8 + 0.1 * np.cos(phase)

t0 = t

Plot the heart

if implot.begin plot("Heart", immapp.em to vec2(21, 21)):
implot.plot line("", x * k, y * k)
implot.end plot()

January 21, 2026 6 of 76
Yy

let the user set the pulse rate via a knob
_, heart_pulse rate = imgui_knobs.knob("Pulse Rate",
heart pulse rate, 30.0, 180.0)

if name == " main_":
immapp.run(gui,
window size auto=True,
window title="Hello!",
with _implot=True,
fps_idle=0 # Make sure that the animation is smooth
(do not limit fps when idle)
)

C++

#include "imgui.h"

#include "implot/implot.h"

#include "imgui-knobs/imgui-knobs.h"
#include "immapp/immapp.h"

#include "hello imgui/hello imgui.h"

#include <cmath>

std::vector<double> VectorTimesK(const std::vector<double>& values,
double k)

{
std::vector<double> r(values.size(), 0.);
for (size t 1 = 0; i < values.size(); ++1)
r{i] = k * values[i];
return r;
}

int main(int , char *[]) {
// Fill x and y whose plot is a heart
double pi = 3.1415926535;
std::vector<double> x, y; {
for (double t =0.; t <pi * 2.; t +=0.01) {
x.push_back(pow(sin(t), 3.) * 16.);
y.push back(13. * cos(t) - 5 * cos(2. * t) - 2 * cos(3. *
t) - cos(4. * t));
}
}
// Heart pulse rate and time tracking
double phase = 0., t0 = ImmApp::ClockSeconds() + 0.2;
float heart_pulse rate = 80.;

auto qui = [&]() {
// Change heart size over time, according to the pulse rate
double t = ImmApp::ClockSeconds();

anuar R o
] y 21, 2026 7 of 76

phase += (t - t0) * (double)heart pulse rate / (pi * 2.);
double k = 0.8 + 0.1 * cos(phase);

t0 = t;

auto xk = VectorTimesK(x, k), yk = VectorTimesK(y, k);

// Plot the heart
if (ImPlot::BeginPlot("Heart", ImmApp::EmToVec2(21, 21)))
{
ImPlot::PlotLine("", xk.data(), yk.data(),
(int)xk.size());
ImPlot::EndPlot();
}

// let the user set the pulse rate via a knob
ImGuiKnobs::Knob("Pulse", &heart pulse rate, 30., 180.);

+;

ImmApp: :AddOnsParams addOnsParams{.withImplot = true};
HelloImGui: :SimpleRunnerParams runnerParams {

.guiFunction = gui,

.windowTitle = "Hello!",

.windowSizeAuto = true,

.fpsIdle = 0.f // Make sure that the animation is smooth (do

not limit fps when idle)

T

ImmApp: :Run(runnerParams, addOnsParams);

January 21, 2026 8 of 76
Yy

o & Hello!

Heart

1.b.iv. Quickly deploy your apps on the web:

These apps can be easily deployed on the web, either in C++ via Emscripten, or in
Python via Pyodide.

« Online demo (C++/Emscripten): Heart Pulse Demo
+ Online demo (Python/Pyodide): Heart Pulse Demo - Pyodide, and html + python
source code

January 21, 2026 9 of 76

https://traineq.org/ImGuiBundle/emscripten/bin/haiku_implot_heart.html
https://traineq.org/imgui_bundle_online/projects/min_bundle_pyodide_app/demo_heart.html
https://traineq.org/imgui_bundle_online/projects/min_bundle_pyodide_app/demo_heart.source.txt
https://traineq.org/imgui_bundle_online/projects/min_bundle_pyodide_app/demo_heart.source.txt

1.c. Interactive Manuals

1.c.i. Dear ImGui Manual:

Dear ImGui Manual lets you explore all the widgets and features of Dear ImGui, with
live examples and the corresponding python or C++ code. It is built using Dear ImGui
Bundle.

Links & About
¥ Dear ImGui Demo ¥ Demo Code imgui.h - Doc
Menu Examples Tools o

dear imgui says hello! (1.90.5) (19050)

Show Table Of Content

Table Of Contents Filter usage:[-excl],incl @@ Expandall @ Collapse all
Code Lookup i

RadioButton

| LGSR Buttons (Colored) . _

¥ Widgets Buttons (Repeating) 1. Tick the Python
v Basic InputText

Inputint, InputFloat

Draglnt, DragFloat

SliderInt, SliderFloat

General
Button

heckbc
cnecoex r-] Searchcode » W 4% Viewion github atthis

2. Ex the jets in the left
Click Click Click Click Click Click Click 3218lines | Ins | | C++ | imgui
Hold to repeat: ‘4 » 0 2 d, -static. s

radio a radio b radio

Tooltip IMGUI_DEMO_MARKER(" ¥ Int, - InputFloat")
if ‘not hasattr(static 2 =123
Value label F changed, -static,if-= input_int(*input-int®, -static.i0)

Inputs y if not-hasattr(static, - 'f@'): static.fe = 0.001
/ changed, -static. f0-=+imgui.input_float("input-float", -static.f0,-0.01,-1.0, "

Hello, world! input texy ged, *static. fo-=-imgui.input_float("input-fleat", ‘static.f0,9.01,°1.0,

inpustext W/ h 6 if not-hasattr(static, 'd0'): static.do-=999939,00000001

2 changed, -static.d =+ imgui.input_double("input double", -static.dd, -0.01,

123

i f1'): static.f1:=-1.e10
0.001 input float angec tic. f input_float("input-scientific", static.f1,:0.9,:0.8, "%e

999999.00000001 input double
: PR : a 2 using:the scientific-notation,\n"
1.000000e+10 input scientific 4 . . N aboateedre +)

0.100 0.200 0.300 input float3

vecda'): -static.vecda-=:[0.10,0.20,0.30]
Dr: ut - float3", -static.vecda)
L) Code Lookup g : =aE i
50 dragnt (7] IMGULDEMO_MARKER("Widgets/Basic/Inputlnt, InputFloat") at imgul_demo.cpp:751
2% drag int 0..1C

1.000 drag float

Press "Esc" to exit this mode

Dear ImGui Manual, a manual for - Made with Enable idling FPS: 8.6 (Idling)
1.c.ii. Dear ImGui Bundle Interactive Manual:

Dear ImGui Bundle interactive manual lets you explore the features of Dear ImGui
Bundle in your web browser.

Pay attention to the “Demo Apps” tab, which contains many examples built with
Dear ImGui Bundle. You can read the documentation, run the demos, and even view
the source code (in C++ and Python) directly from the manual!

¥ Dear ImGuiBund.. DearImGui Immediate Apps Implot NodeEditor ~ Markdown TextEditor Widgets ImmVision ~ NanoVG ImGuizmo Themes Logger texinspect X
P Code for this demo.

HellolmGui and ImmApp

. library based on ImGui that enables to easily create applications with ImGul Link to the r
. (aka ‘Immediate App", a submodule of ImGuiBundie) is a thin extension of HellolmGui that enables to easily nitializ

Demo applications (scroll with the mouse wheel below for more demos)
demo_hello_world Hello world demo: how to create an app with ImmApp in a few lines. i View code
demo_assets_addons How to use assets, and how to use add-ons (Markdown and ImPlot) View code
demo.docking Full Demo: complex docking layout, additional fonts (including colored fonts and emois), log window, status bar, user settings, etc. View code
demo_custom_background How to use a custom 3D background View code
demo_powersave How to have smooth animations, and how spare the CPU when idling View code
demo_testengine How to use ImGui Test Engine to test and automate your application View code

Code for demo_hello_world)

1:01 C:01 @ Python Code % L:01 C:01

void Gui()
ext("Hello, ‘world!")
TnGui: :Text("Hello, world!");

restore window' position-a
ometry==True

14 true // window_size_auto 1)
15 //Uncomment - the next - Line to dow'position and size from prevl 15
16 /1, true- [/ windowRestorePreviousGeometry

17)

return-0;

January 21, 2026 10 of 76

https://pthom.github.io/imgui_manual_online/manual/imgui_manual.html
https://traineq.org/ImGuiBundle/emscripten/bin/demo_imgui_bundle.html

1.c.iii. Online Python playground:

With this online playground, you can edit and run imgui apps in the browser,
without installing anything.

G
+
al

@®@® [[J 2 rersonal < =} traineq.org

Dear ImGui Bundle Playground
Live code. Instant Web GUI. Pure P CEEASET T Animated 3d plot: butterfly effect [

000 Initial Delta

"'# Lorenz Attractor & Butterfly Effect
This is a simple example of the Lorenz Att
because of a small initial difference, illi

The term sxbutterfly effectsx in popular m
of the Lorenz attractor, namely that tiny
pletely different trajectories.

import numpy as np
from imgui_bundle import implot3d, immapp,
from dataclasses import dataclass

@dataclass

class LorenzParams:
sigma: float = 10.0
rho: float = 28.0

PARAMS = LorenzParams()

class AnimatedLorenzTrajectory:
def __init_ (self, x, y, 2):
self.xs = np.array([x])

self.ys = np.array([y])

self.zs = np.array([z])

def step(self):
X, ¥, z = self.xs[-11, self.ys[-1]

4 dx = PARAMS.sigma * (y - x)

% * (PARAMS.rho - z) -y

X % y - PARAMS.beta * z

* PARAMS.dt

dy * PARAMS.dt

dz * PARAMS.dt

N< X ag
&2
1

o4+
[T
-
x

self.xs = np.concatenate([self.xs,
st iR el st b i

January 21, 2026 11 of 76

https://traineq.org/imgui_bundle_online/projects/imgui_bundle_playground/

1.d. Examples and Gallery

1.d.i. Examples in the interactive manual:

Below are simple example applications available in the Dear ImGui Bundle interactive
manual, in the “Demo Apps” tab.

s Implot NodeEditor Markdown

Figure 1: Inside the manual, click the “Demo Apps” tab, select a demo, run it and look
at its source code.

https://traineq.org/ImGuiBundle/emscripten/bin/demo_imgui_bundle.html

Complex layouts with docking windows:

Figure 2: A complex GUI app with a docking layout, and several possible
arrangements

Run this demo in your browser
This demonstration showcases how to:

« set up a complex docking layouts (with several possible layouts)

+ use the status bar

« use default menus (App and view menu), and how to customize them
« display a log window

« load additional fonts

« use a specific application state (instead of using static variables)

+ save some additional user settings within imgui ini file

Its source code is heavily documented and should be self-explanatory.

January 21, 2026 12 of 76

https://traineq.org/ImGuiBundle/emscripten/bin/demo_imgui_bundle.html
https://traineq.org/ImGuiBundle/emscripten/bin/demo_imgui_bundle.html
https://traineq.org/ImGuiBundle/emscripten/bin/demo
https://traineq.org/ImGuiBundle/emscripten/bin/demo_docking.html

o C++ source code
» Python source code

Custom 3D Background:

Figure 3: A custom 3D scene rendered in the background of an ImGui application
Run this demo in your browser
This demonstration showcases how to:

+ Display a 3D scene in the background via the callback
runnerParams.callbacks.CustomBackground

« Load and compile a shader

 Adjust uniforms in the GUI

Its source code is heavily documented and should be self-explanatory.
« C++ source code

+ Python source code

Display & analyze images with ImmVision:

Figure 4: ImmVision in action

Figure 5: Zooming on the images (with the mouse wheel) to display pixel values

Run this demo in your browser

January 21, 2026 13 0of 76
y

https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/demos_cpp/demos_immapp/demo_docking.cpp
https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/demos_python/demos_immapp/demo_docking.py
https://traineq.org/ImGuiBundle/emscripten/bin/demo_custom_background.html
https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/demos_cpp/demos_immapp/demo_custom_background.cpp
https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/demos_python/demos_immapp/demo_custom_background.py
https://traineq.org/ImGuiBundle/emscripten/bin/demo_immvision_process.html

ImmVision is an immediate image debugger which can display multiple kinds of
images (RGB, RGBA, float, etc.), zoom to examine precise pixel values, display float
images with a versatile colormap, etc.

This demonstration showcases how to:

- display two versions of an image, before after an image processing pipeline
« zoom on specific ROI of those images to see pixel values
« play with the parameter of the image processing pipeline

Its source code is heavily documented and should be self-explanatory.
+ C++ source code

+ Python source code

Test & Automation with ImGui Test Engine:

Run this demo in your browser
ImGui Test Engine is a Tests & Automation Engine for Dear ImGui.

This demo source code is heavily documented and should be self-explanatory. It
shows how to:

+ enable ImGui Test Engine via RunnerParams.use_imgui_test_engine

+ define a callback where the tests are registered
(runner_params.callbacks.register_tests)

. create tests, and:

» automate actions using “named references” (see Named References)
» display an optional custom GUI for a test

« manipulate custom variables

« check that simulated actions do modify those variables

Note

See Dear ImGui Test Engine License. (TL;DR: free for individuals, educational,
open-source and small businesses uses. Paid for larger businesses)

e C++ source code

January 21, 2026 14 of 76

https://github.com/pthom/immvision
https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/demos_cpp/demos_immvision/demo_immvision_process.cpp
https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/demos_python/demos_immvision/demo_immvision_process.py
https://traineq.org/ImGuiBundle/emscripten/bin/demo_testengine.html
https://github.com/ocornut/imgui_test_engine
https://github.com/ocornut/imgui_test_engine/wiki/Named-References
https://github.com/ocornut/imgui_test_engine/blob/main/imgui_test_engine/LICENSE.txt
https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/demos_cpp/demos_immapp/demo_testengine.cpp

» Python source code

1.d.ii. Example Applications Gallery:

More examples in the Gallery. Add yours!

4K4D:

A research project aimed for CVPR 2024, using python bindings (ImGui Bundle).

@inproceedings{xu20244k4d,
title={4K4D: Real-Time 4D View Synthesis at 4K Resolution},
author={Xu, Zhen and Peng, Sida and Lin, Haotong and He, Guangzhao and
Sun, Jiaming and Shen, Yujun and Bao, Hujun and Zhou, Xiaowei},
booktitle={CVPR},
year={2024}
}

4K4D: Real-Time 4D View Synthesis at 4K Resolution

Volumetric Video Viewer - 84.789 FPS

"N

Figure 7: A volumetric video, showing an ImGui interface to control the rendering
parameters.

HDRview:

HDRview is a research-oriented image viewer with an emphasis on examining and
comparing high-dynamic range (HDR) images.

It is developed by Wojciech Jarosz and is built using Hello ImGui (which is included
in Dear ImGui Bundle), in C++. It runs on Windows, Linux, macOS, iOS, and on the
web via emscripten!

January 21, 2026 15 of 76

https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/demos_python/demos_immapp/demo_testengine.py
https://github.com/pthom/imgui_bundle/discussions/107
https://zju3dv.github.io/4k4d/
https://github.com/wkjarosz/hdrview

Figure 8: HDRview running on an iPad as a webapp, viewing a luminance-chroma
EXR image stored using XYZ primaries with chroma subsampling.

Access HDRview online: https://wkjarosz.github.io/hdrview/

January 21, 2026 16 of 76

https://wkjarosz.github.io/hdrview/

l.e. Resources

1.e.d. Interactive demos & manuals:
The manuals and demos below are using Dear ImGui Bundle itself!

« ImGui Bundle interactive manual: lots of example apps which you can run and
inspect the source code

« ImGui Manual (widget reference & code): explore all the widgets and features of
Dear ImGui, with live examples and the corresponding python or C++ code

+ Online Pyodide playground: try imgui apps using Python, directly in your
browser

1.e.ii. Documentation websites:

+ Hello ImGui documentation. Hello ImGui provides a simple framework to
quickly create applications using Dear ImGui. It is included in Dear ImGui
Bundle.

+ Dear ImGui Bundle documentation.

« Fiatlight documentation. FiatLight provides automatic UI generation for
functions and structured data (dataclasses, pydantic models), making it a
powerful tool for rapid prototyping and application development. It is build on
top of Dear ImGui Bundle.

1.e.iii. YouTube Playlist:
A series of video tutorials about Dear ImGui Bundle, Hello ImGui and Fiatlight:
+ Dear ImGui Bundle - YouTube Playlist

1.e.iv. DeepWiki:

Ask DeepWiki

DeepWiki is an Al based website where you can ask questions about the usage of
Dear ImGui Bundle and get answers. It is trained on the full documentation and the
source code of the Dear ImGui Bundle. Expect some inconsistencies, but it is still
helpful.

1.e.v. Repositories:

+ Dear ImGui official repository

+ Dear ImGui Bundle repository

+ Hello ImGui repository

+ Litgen (bindings generator) repository
« Fiatlight repository

January 21, 2026 17 of 76
Yy

https://traineq.org/ImGuiBundle/emscripten/bin/demo_imgui_bundle.html
https://pthom.github.io/imgui_manual_online/manual/imgui_manual.html
https://traineq.org/imgui_bundle_online/projects/imgui_bundle_playground/
https://pthom.github.io/hello_imgui
https://pthom.github.io/imgui_bundle
https://pthom.github.io/fiatlight_doc
https://www.youtube.com/playlist?list=PLaJx_KrDECZPzttQ77Gv8DD7OAUwmtWUc
https://deepwiki.com/pthom/imgui_bundle
https://github.com/ocornut/imgui
https://github.com/pthom/imgui_bundle
https://github.com/pthom/hello_imgui
https://github.com/pthom/litgen
https://github.com/pthom/fiatlight

1.e.vi. Full PDF manuals for LLMs:

You may feed the manuals below to a LLM, so that it can help you when using the
libraries.

+ Hello ImGui manual (full pdf)
« ImGui Bundle manual (full pdf)
« Fiatlight manual (full pdf)

January 21, 2026 18 of 76
y

https://raw.githubusercontent.com/pthom/imgui_related_docs/refs/heads/main/manuals/hello_imgui_manual.pdf
https://pthom.github.io/imgui_bundle/assets/book.pdf
https://pthom.github.io/fiatlight_doc/flgt.pdf

2. FOrR PYTHON USERS

2.a. Introduction

2.a.i. Immediate GUI in Python with Dear ImGui Bundle:

The most popular Immediate Mode GUI library is Dear ImGui, a powerful C++
library originally created for real-time tools in game engines, now widely used in
many industries, with over 60k stars on GitHub.

For Python, Dear ImGui Bundle brings full Dear ImGui support plus many extra
libraries, making it ideal for rapid prototyping as well as building complex apps with
advanced widgets, plotting, node editors, and more.

The python bindings are heavily documented so that they are easy to browse. They
are also autogenerated, so that they are always up-to-date.

imgui.mouse

(f) is_mouse_down (button) imgui_bundle.imgui
(f) is_mouse_clicked (button, repeat) imgui_bundle.imgui
(P is_mouse_double_clicked (button) imgui_bundle.imgui
() get_mouse_cursor () imgui_bundle.imgui
(D) set_mouse_cursor (cursor_type) imgui_bundle.imgui
(P set_next_frame_want_capture_mouse (want_capture. imgui_bundle.imgui
(9 get_mouse_clicked_count (button) imgui_bundle.imgui
() get_mouse_drag_delta(button, lock_threshold) imgui_bundle.imgui
(D) get_mouse_pos () imgui_bundle.imgui
(F) get_mouse_pos_on_opening_current_popup () imgui_bundle.imgui
(f) is_any_mouse_down () imgui_bundle.imgui
ITY S mmsime dmmamd s s oded s T mmls bememmbnal % Sensmiid Rpimel & 5 :
Press ~. to choose the selected (or first) suggestion and insert a dot afterwards Mext Tip

imgui. get_muush_drag_de‘l_ta(]

[imgui_bundle.imgui
def get_mouse_drag_delta(button: int = 0,
lock_threshold: float = -1.8) -> ImVec2

return the delta from the initial clicking position while the mouse button is pressed
or was just released. This is locked and return 0.0 until the mouse moves past a
distance threshold at least once (uses io.MouseDraggingThreshold if
lock_threshold < 0.0) &

2.a.ii. Anatomy of an application with Dear ImGui Bundle:

imgui_bundle is a Python package that unifies multiple Dear ImGui-related
submodules:

o imgui: the core Dear ImGui library

« implot and implot3d: for advanced, real-time plotting
« imgui md: markdown rendering for imgui

« hello_imgui: an approachable starter kit for new apps

January 21, 2026 19 of 76
y

https://github.com/ocornut/imgui
https://github.com/pthom/imgui_bundle

« immapp: helper to activate “addons” (like implot, markdown, etc.)
+ Plus about 20 other powerful tools

The example below is heavily commented and shows how to create a simple app that
combines Markdown text and an animated plot using implot:

import numpy as np
from imgui bundle import imgui, implot, imgui md, hello_imgui, immapp

def gui():

Render Markdown text

imgui md.render unindented("""

Render an animated plot with ImPlot

This example uses "ImPlot’ for real-time plotting, and “imgui md®
for markdown.

)

Render an animated plot (updates every frame)
if implot.begin plot(
title id="Plot",
size in em units (lem = height of a character)
size=hello _imgui.em to vec2(40, 20)):
X = np.arange(0, np.pi * 4, 0.01)
y = np.cos(x + imgui.get time())
implot.plot line("yl", x, y)
implot.end plot()

if imgui.button("Exit"):
hello _imgui.get runner params().app_shall exit = True

Run the app with ImPlot and markdown support
immapp.run(gui,
with_implot=True,
with_markdown=True,
window size=(700, 500))

January 21, 2026 20 of 76
Yy

Render an animated plot with ImPlot

This example uses ImPlot for real-time plotting, and imgui_md for markdown.

Plot

2.a.iii. Deploy your applications:

Dear ImGui Bundle apps are highly portable—they can run as standalone Python
scripts, in Jupyter notebooks, or even directly in web browsers via Pyodide.

- Standalone scripts: Run on any PC (Windows, macOS, Linux) with minimal
setup.

« Jupyter notebooks: The app runs in a separate window, and a screenshot is
displayed in the notebook after closing (requires running Jupyter locally).

« Web (Pyodide): No server or installation required—just a static HTML file. Your
Python app runs in the browser, with the package downloaded from a CDN.

January 21, 2026 210f 76

+ @88 T4V o G » & @ Codev GoTo

ImGui Bundle in a notebook

[> 1 import numpy as np

from imgui_bundle import imgui, implot, imgui_md, hello_imgui, immapp

def gui():
if implot.begin_plot(title_id="Plot",size=hello_imgui.em_to_vec2(40, 20)):
% = np.arange(0, np.pi * 4, 0.01)

implot.plot_line("cos", x, np.cos(x + imgui.get_time()))
implot.end_plot()

immapp.run(gui, with_implot=True)
11

v [5] 2s 152ms

Plot

o,
0.8} Mcos E N\

10 12

January 21, 2026 22 of 76

2.b. Install for Python
2.b.i. Install from pypi:

Minimal install
pip install imgui-bundle

or to get all optional features:
pip install "imgui-bundle[full]"

Binary wheels are available for Windows, macOS and Linux. If a compilation from
source is needed, the build process might take up to 5 minutes, and will require an
internet connection.

Platform notes

+ Windows: Under windows, you might need to install the msvc redist

« macOS : under macOS, if a binary wheel is not available (e.g. for older macOS
versions), pip will try to compile from source. This might fail if you do not have
XCode installed. In this case, install imgui-bundle with the following command
SYSTEM VERSION COMPAT=0 pip install --only-binary=:all: imgui_bundle

2.b.ii. Install from source:

Clone the repository
git clone https://github.com/pthom/imgui bundle.git
cd imgui_bundle

Build and install the package (minimal install)
pip install -v .

or build and install the package with all optional features:
pip install -v ".[full]"

The build process might take up to 5 minutes, and will clone the submodules if
needed (an internet connection is required).

2.b.iii. Run the python demo:
Simply run imgui_bundle_demo.
The source for the demos can be found inside bindings/imgui_bundle/demos_python.

TIP: Consider imgui bundle demo as an always available manual for Dear ImGui
Bundle with lots of examples and related code source.

January 21, 2026 23 of 76
y

https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170\#visual-studio-2015-2017-2019-and-2022
https://github.com/pthom/imgui_bundle/tree/main/bindings/imgui_bundle/demos_python

2.c. Tips

2.c.i. Context Managers:

In Python, the module imgui_ctx provides a lot of context managers that
automatically call imgui.end(), imgui.end_child(), etc., when the context is exited, so
that you can write:

from imgui _bundle import imgui, imgui_ ctx

with imgui ctx.begin("My Window"): # imgui.end() called automatically
imgui.text("Hello World")

Of course, you can choose to use the standard API by using the module imgui:

imgui.begin("My Window")
imgui.text("Hello World")
imgui.end()

+ See imgui_ctx
+ See demo_python_context_manager.py

2.c.ii. Advanced glfw callbacks:
When using the glfw backend, you can set advanced callbacks on all glfw events.
Below is an example that triggers a callback whenever the window size is changed:

from imgui_bundle import glfw utils, hello _imgui, imgui
import glfw # if you import glfw, do it after_imgui bundle

define a callback
def my window size callback(window: glfw. GLFWwindow, w: int, h: int):
print(f"Window size changed to {w}x{h}")

def install glfw callbacks():
Get the glfw window used by hello imgui
glfw win = glfw utils.glfw window hello imguif()
glfw utils.glfw.set window size callback(glfw win,
my window size callback)

Install the callback once everything is initialized, for example:
runner_params = hello_imgui.RunnerParams()

...

runner_params.callbacks.post init = install glfw_callbacks

Caution

It is important to import glfw after imgui_bundle, since - upon import -
imgui_bundle informs glfw that it shall use its own version of the glfw dynamic
library.

January 21, 2026 24 of 76

https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/imgui_ctx.py
https://github.com/pthom/imgui_bundle/tree/main/bindings/imgui_bundle/demos_python/demos_immapp/demo_python_context_manager.py

2.c.iii. Display Matplotlib plots in ImGui:
imgui_fig.py is a small utility to display Matplotlib plots in ImGui.
See demo_matplotlib.py for an example.

2.c.iv. Read the libraries doc as a Python developer:

General advices:

ImGui is a C++ library that was ported to Python. In order to work with it, you will
often refer to its manual, which shows example code in C++.

In order to translate from C++ to Python:

1. Change the function names and parameters’ names from CamelCase to
snake_case
2. Change the way the output are handled.

a. in C++ ImGui::RadioButton modifies its second parameter (which is passed by
address) and returns true if the user clicked the radio button.

b. In python, the (possibly modified) value is transmitted via the return:
imgui.radio_button returns a Tuple[bool, str] which contains (user_clicked,
new_value).

1. if porting some code that uses static variables, use the @immapp.static
decorator. In this case, this decorator simply adds a variable value at the
function scope. It is preserved between calls. Normally, this variable should be
accessed via demo_radio_button.value, however the first line of the function
adds a synonym named static for more clarity. Do not overuse them! Static
variable suffer from almost the same shortcomings as global variables, so you
should prefer to modify an application state.

Example

C++

void DemoRadioButton()

{
static int value = 0;
ImGui::RadioButton("radio a", &value, 0); ImGui::SamelLine();
ImGui::RadioButton("radio b", &value, 1); ImGui::SamelLine();
ImGui::RadioButton("radio c", &value, 2);

}

Python

@immapp.static(value=0)
def demo _radio button():

static = demo_radio button

clicked, static.value = imgui.radio button("radio a", static.value,
0)

January 21, 2026 250f 76

https://github.com/pthom/imgui_bundle/tree/main/bindings/imgui_bundle/imgui_fig.py
https://github.com/pthom/imgui_bundle/tree/main/bindings/imgui_bundle/demos_python/demos_immapp/demo_matplotlib.py

imgui.same line()

clicked, static.value imgui.radio button("radio b", static.value,

imgui.same line()
clicked, static.value = imgui.radio button("radio c", static.value,
2)

Enums and TextInput:

In the example below, two differences are important:

InputText functions:

imgui.input text (Python) is equivalent to ImGui: : InputText (C++)

« In C++, it uses two parameters for the text: the text pointer, and its length.
+ In Python, you can simply pass a string, and get back its modified value in the
returned tuple.

Enums handling;:

« ImGuiInputTextFlags (C++) corresponds to imgui.InputTextFlags (python)
and it is an enum (note the trailing underscore).

« ImGuiInputTextFlags (C++) corresponds to imgui.InputTextFlags (python)
and it is an int (note: no trailing underscore)

You will find many similar enums.

The dichotomy between int and enums, enables you to write flags that are a
combinations of values from the enum (see example below).

Example
C++

void DemoInputTextUpperCase()
{
static char text[64] = "";
ImGuiInputTextFlags flags = (
ImGuiInputTextFlags CharsUppercase
| ImGuiInputTextFlags CharsNoBlank
)
/*bool changed = */ ImGui::InputText("Upper case, no spaces", text,
64, flags);
}

Python

@immapp.static(text="")

def demo_input text decimal() -> None:
static = demo_input text decimal
flags:imgui.InputTextFlags = (
imgui.InputTextFlags .chars uppercase.value

January 21, 2026 26 of 76

| imgui.InputTextFlags .chars no_blank.value

)

changed, static.text = imgui.input text("Upper case, no spaces",
static.text, flags)

Dear ImGui C++ vs Python API:
Dear ImGui’s C++ API is thoroughly documented in its header files:

e main API
« internal API

The Dear ImGui Python API The python API closely mirrors the C++ API, and its
documentation is extremely easy to access from your IDE, via thoroughly
documented stub (*.pyi) files.

« main API
« internal API

January 21, 2026 27 of 76

https://github.com/ocornut/imgui/blob/master/imgui.h
https://github.com/ocornut/imgui/blob/master/imgui_internal.h
https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/imgui/__init__.pyi
https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/imgui/internal.pyi

2.d. Assets folder
(for python)

hello_imgui and immapp applications rely on the presence of an assets/ folder.
This folder stores:

+ Default fonts used by the markdown renderer (if the markdown addon is used).
« All the resources (images, fonts, etc.) used by the application. Feel free to add
any resources there!

Assets folder location

Place the assets folder in the same folder as the script.
If needed, change the assets folder location:

Call hello_imgui.set_assets_folder() at startup.
Typical layout of the assets folder

assets/
+-- fonts/
| +-- DroidSans.ttf # Default fonts used by HelloImGui
to
| +-- fontawesome-webfont.ttf # improve text rendering (esp. on
High DPI)
| [# if absent, a default LowRes font
is used.
I I
| +-- Roboto/ # Optional: fonts for markdown
| +-- LICENSE.txt
| +-- Roboto-Bold.ttf
| +-- Roboto-BoldItalic.ttf
| +-- Roboto-Regular.ttf
| +-- Roboto-RegularItalic.ttf
| +-- Inconsolata-Medium.ttf
+

-- images/
+-- markdown broken image.png # Optional: used for markdown
+-- world.png # Add anything in the assets

folder!

Note: in C++, the assets folder also contains an app settings folder, which contains
application settings and app icons for different platforms. This is not needed / not
available in Python applications.

Where to find the default assets
You can download the default assets as a zip file.

Look at the folder imgui_bundle/bindings/imgui_bundle/assets to see its content.

January 21, 2026 28 of 76

https://traineq.org/ImGuiBundle/assets.zip
https://github.com/pthom/imgui_bundle/tree/main/bindings/imgui_bundle/assets

2.e. Pure Python Backends

HelloImGui and ImmApp use glfw as a default backend. If you wish to use a different
backend, it is possible to use sdI2 or pyglet, via pure python backends.

python_backends contains pure python backends for glfw, pyglet, sd12 and sdl3. They
do not offer the same DPI handling as HelloImGui, but they are a good starting point
if you want to use alternative backends.

See examples for more information.

January 21, 2026 29 of 76

https://github.com/pthom/imgui_bundle/tree/main/bindings/imgui_bundle/python_backends
https://github.com/pthom/imgui_bundle/tree/main/bindings/imgui_bundle/python_backends/examples

2.f. Async Support

ImGui Bundle provides async/await support that enables true parallel execution of
Python code alongside GUI rendering. This allows your Python computations to run
at full speed while the GUI remains responsive.

Note: an async execution mode is also available for Jupyter notebooks; see Notebook
Usage for details.

2.fi. Overview:

immapp.run_async() and hello_imgui.run_async() function allows you to run
ImGui applications asynchronously using Python’s asyncio framework. This is
particularly useful when:

+ You need to perform computations while the GUI is running

+ You're building data visualization dashboards with live updates
+ You want to integrate ImGui into async Python applications

+ You're working in Jupyter notebooks (see Notebook Usage)

2.£ii. Quick Example:
Here’s a simple example showing parallel execution:

import asyncio
import time
from imgui _bundle import immapp, imgui, hello _imgui, imgui_md

GUI_FINISHED = False
COMPUTATION_COUNT = 0
START_TIME = time.time()

def gui():
params = hello _imgui.get runner params()
idling params = params.fps idling
idling params.fps_idling mode =

hello imgui.FpsIdlingMode.early return
idling params.vsync _to monitor = False
idling params.fps max = 60.0

imgui.text(f"GUI FPS: {hello imgui.frame rate():.1f}")

imgui.text(f"Computations per second: {COMPUTATION COUNT /
(time.time() - START TIME):.1f}")

global GUI FINISHED

GUI FINISHED = hello_imgui.get runner params().app_shall exit

async def python computation loop():
"""Run computations while GUI is active.
"""Python code which runs in parallel with the GUI!"""
global COMPUTATION_ COUNT

January 21, 2026 30 of 76

notebooks.md
notebooks.md
notebooks.md

while not GUI_FINISHED:
= sum(range(1000)) # Do some work
COMPUTATION COUNT += 1
await asyncio.sleep(0) # Yield to event loop (required for async
cooperation)

async def main():

Start GUI as an asyncio task (non-blocking)

_gui task = asyncio.create task(immapp.run async(gui,
window size auto=True))

Run computations in parallel

await python computation loop()

if name == " main_ ":
asyncio.run(main())

Also see demos _immapp/demo run_async.py
2.f.ii. Automatic FPS Optimization:

immapp. run_async automatically adjusts FPS idling parameters to optimize
performance, so that the Python loop can run at maximum speed.

The settings below are applied automatically by immapp.run_async to ensure that the
GUI rendering returns early to Python instead of sleeping, allowing maximum
parallelism between GUI rendering and Python code execution:

runner_params.fps_idling.fps_idling mode =

hello imgui.FpsIdlingMode.early return
runner_params.fps_idling.vsync_to monitor = False
runner_params.fps_idling.fps max = 60.0

2.fiv. Signature Patterns:
run_async() supports two different ways to configure your application:

1. Simple GUI Function:

async def gqui():
imgui.text("Hello, World!'")
if imgui.button("Click me"):
print("Button clicked!")

await immapp.run async(
gui,
window title="My App",
window size auto=True,
top_most=True,
Optional addons (immapp only)
with implot=True,

January 21, 2026 310f76

https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/demos_python/demos_immapp/demo_run_async.py

with _markdown=True

)

2. Full RunnerParams (Maximum Control):

from imgui bundle import hello imgui, immapp

runner_params = hello_imgui.RunnerParams()
runner_params.callbacks.show gui = gui
runner_params.app_window params.window title = "My App"
runner_params.imgui window params.show menu bar = True

With immapp, you can use AddOnsParams
addons = immapp.AddOnsParams()
addons.with_implot = True
addons.with node editor = True

asyncio.run(immapp.run async(runner_params, addons))

2.f.v. Yielding to the Event Loop:

In your async code, you must regularly yield control to the event loop to allow the
GUI to render:

async def my computation():
while condition:
Do some work
result = expensive computation()

Yield to allow GUI rendering (critical!)
await asyncio.sleep(0)

Without await asyncio.sleep(0), the GUI will freeze because asyncio can’t switch
between tasks.

2.fvi. Troubleshooting:

GUI Freezes:

Problem: The GUI becomes unresponsive during computations. Solution: Make sure
to await asyncio.sleep(0) regularly in your computation loops.

Exceptions in the async GUI:

If your GUI raises an exception, it might be difficult to trace with the GUI is running

in an async way.

In that case, it is recommended to first test your GUI in blocking mode using
immapp. run, which will propagate exceptions normally. Once your GUI works in
blocking mode, you can then switch to non-blocking mode (immapp.run_async).

January 21, 2026 32 of 76

2.g. Jupyter Notebook support

2.g.i. Introduction:

The notebook submodules (immapp.nb and hello imgui.nb) provide convenient
functions for the usage in a local jupyter notebook, with two main modes:

« blocking mode: other cells cannot be run in parallel. A screenshot is displayed
after the application exits.

« non-blocking mode: other cells can be run in parallel. The application window
updates live.

Note

Note: Working on a remote notebook (or via Google Collab) may not work, since it
requires a local X11 server (it might work if using X11 formwarding).
2.g.ii. Blocking mode:

APL:

immapp.nb.run and hello_imgui.nb.run functions will run a GUI application, wait
for it to exit, and display a screenshot of the final application screen in the cell
output.

During the application execution, other cells cannot be run.
Parameters

immapp.nb.run and hello_imgui.nb.run accept the same parameters as immapp. run
and hello_imgui. run, respectively.

Optional additional parameters to controls the screenshot size (choose only one of
the two):

+ thumbnail ratio: (default=1.0) You can use it to change the size of the thumbnail.
Passing 0.5 will create a thumbnail half the width of the window.

+ thumbnail height: (default=0) You can use it to set a fixed height for the
thumbnail (in pixels). If 0, the height is computed from the app window size.

Example:

The example cell below demonstrates the blocking mode using immapp.nb. run. It
shows a sinusoidal curve that can be adjusted with a slider. After closing the
application window, a screenshot of the final state is displayed in the cell output.

from imgui bundle import implot, immapp, imgui
import numpy as np

FREQ = 0.1

def gui():

January 21, 2026 33 of 76
y

global FREQ
~, FREQ = imgui.slider float("Frequency", FREQ, 0.01, 1.0)
X = np.arange(0, 100, 0.1)
y = np.sin(FREQ * x)
if implot.begin plot("My plot"):
implot.plot line("Sine wave", y)
implot.end plot()

immapp.nb.run(gui, window size=(600, 350), with implot=True,
thumbnail height=500)

0.700 Fraguency
My plot

0.8 | | W5 ne wava
0.6
0.4
o2

.2
-0.4
-0.6
-0.8

] 104 2] 00 40 S0 &0 FLLY 800 oon

2.g.iii. Non blocking mode:
APIL:
start:

o immapp.nb.start and hello imgui.nb.start will run a GUI application,
display it in a top-most window on top of the browser.

Other cells can be run while the application is running. The application
window will update live.

Note: these function return an asyncio. Task, which may be awaited or managed using
asyncio.

Parameters

immapp.nb.start and hello_imgui.nb.start accept the same parameters as
immapp.start and hello_imgui.start, respectively.

Optional additional parameter: top_most to control if the application window should
stay on top of other windows.

is_running:

January 21, 2026 34 of 76

o immapp.nb.is running and hello imgui.nb.is running return True if the
application is running, False otherwise.

stop:
« immapp.nb.stop and hello_imgui.nb.stop will stop the running application.
Tip

Only one application can be run at a time from a notebook. Trying to start a new
application while another one is running will exit the previous one.

Note: If other cells are running while the application is running, they should call await
asyncio.sleep(0) periodically to allow the application to update.

Important

If your GUI raises an exception, it might be difficult to trace with the GUI is
running in an async way.

In that case, it is recommended to first test your GUI in blocking mode using
immapp.nb. run, which will propagate exceptions normally. Once your GUI works
in blocking mode, you can then switch to non-blocking mode (immapp.nb.start).

Example:

Start the application:

The cell below demonstrates the non-blocking mode using immapp.nb.start. It runs

the same application as before (a sinusoidal curve that can be adjusted with a slider).

You can modify the frequency while the application is running by changing the value
of the FREQ variable in another cell.

When you run it, the cell exits immediately, but the GUI application continues to
show and to be interactive (you can then run other cells while the application is
running).

Note: since, immapp.nb.start returns an asyncio.Task, you can see that the cell output
shows the task information (Task pending, ...).

Important

In a non-blocking mode, the GUI will not be shown inside the notebook (not even
as a screenshot). Instead, it will be displayed in a separate top-most window on
top of the browser.

Refer to the “video demonstration” below for a demo of how the cells below will
render on your screen.

immapp.nb.start(gui, window size=(500, 300), with implot=True,
top_most=True)

January 21, 2026 35 of 76
y

<Task pending name='Task-35' coro=<run_async() running at /Users/pascal/
dvp/OpenSource/ImGuiWork/ Bundle/imgui bundle/bindings/imgui_bundle/
immapp/run_async_overloads.py:63>>

Interact while the application is running:

The cell below shows that it is possible to modify the frequency via code while the
application is running, and the curve updates live.

FREQ = 0.5 # Modify frequency while the app is running
Check if the application is running:
The cells below can be used to check if the application is running

immapp.nb.is running()

True
Stop the application:
immapp.nb.stop()

Video demonstration:

~
fleoe « Q imgui_bundle (n % NN =Nu)
& @ notebook_runners.ipynb U X3 % notebooks.md 3 @ demo_interactive_notebook.ipynb U ® I' _tocyml M
@ nb.py 1, M sl -
docs > book > python > B notebook_runners.ipynb > Mi Non blocking mode > Mi Example
% Generate + Code -+ Markdown | > RunAll 'O Restart (&) Jupyter Variables - B v314 (3.14.2) (Python 3.14.2)
Start the application 6/ B-U

The cell below demonstrates the non-blocking mode using immapp.nb.start. It runs the same application as before (a sinusoidal curve that
can be adjusted with a slider). You can modify the frequency while the application is running by changing the value of the FREQ variable in
another cell.

When you run it, the cell exits immediately, but the GUI application continues to show and to be interactive (you can then run other cells while
the application is running).

Note: since, immapp.nb.start returns an asyncio.Task, you can see that the cell output shows the task information (Task pending, ...).

:z{important} In a non-blocking mode, the GUI will not be shown inside the notebook (not even as a screenshot). Instead, it will be displayed in
a separate top-most window on top of the browser.

Refer to the "video demonstration” below for a demo of how the cells below will render on your screen. :::

D LR BY E O

immapp.nb.start(gui, window_size=(500, 380), with_implot=True)

Python

Interact while the application is running

The cell below shows that it is possible to modify the frequency via code while the application is running, and the curve updates live.

FREQ = 0.5 # Modify frequency while the app is running

> 0:00/0:18

Figure 9: Demonstration of the non-blocking mode in a Jupyter notebook.

2.g.iv. Example: Real-Time Data Stream Simulation:

This example simulates a live data stream that continuously updates, like you might
see in a monitoring dashboard or during ML training.

January 21, 2026 36 of 76

Tip
Refer to the “video demonstration” below for a demo of how the cells below will
render on your screen.

Start the GUI:

The cell below instantiate the application data (stream_data) and starts a GUI
application that displays the live data stream.

from imgui_bundle import immapp, imgui, hello_imgui, implot
import numpy as np
import time

Streaming data buffer

stream data = {
"values": [1],
"max_points": 500,
"paused": False

def streaming gui():
"""GUI that shows a live streaming plot"""
imgui.text("Live Data Stream")
imgui.text(f"Points: {len(stream datal'values'])}")

Control buttons
if imgui.button("Pause" if not stream data["paused"] else "Resume"):
stream data["paused"] = not stream data["paused"]

imgui.same line()
if imgui.button("Clear"):
stream_data["values"].clear()

imgui.separator()

Plot the streaming data
if len(stream data["values"]) > 0:
if implot.begin plot("Data Stream", hello imgui.em to vec2(40,
15)):
x_data = np.arange(len(stream data["values"]),
dtype=np.float32)
y data = np.array(stream data["values"], dtype=np.float32)
implot.setup axes("x", "y", implot.AxisFlags .auto fit,
implot.AxisFlags .auto fit)
implot.plot line("Value", x _data, y data)
implot.end plot()

if imgui.button("Close"):
hello_imgui.get runner params().app_shall exit = True

Start streaming GUI (note: immapp.nb.start is non-blocking

January 21, 2026 37 of 76

and immediately returns an asyncio task)
immapp.nb.start(
streaming gui,
window title="Data Stream Demo",
window size=(800, 400),
with implot=True,
top_most=True

print("v Streaming GUI started!")
print("v Run the next cell to start the data stream.")

v Streaming GUI started!
v Run the next cell to start the data stream.

Simulate Data Stream:

The cell below simulates a data stream: this will add data points while the GUI
displays them in real-time.

« The GUI is already running above (in an asyncio task)
+ So, we define another asyncio task to add data points (stream_data_loop below),

and we run it in async way.

This cell will run for 5 seconds: while it runs, you should see the GUI updating live

with new data points.

Important

It is important to call periodically await asyncio.sleep(...) in the loop, to
yield control to the event loop, so that the GUI can update. You may sleep for 0
seconds if you want to yield control with the shortest possible delay. (in the

example below, we sleep for 0.001 seconds to simulate a 100 Hz data stream).

#

import time
import random
import asyncio

async def stream data loop():
print("Starting data stream... (will run for 10 seconds)")
start_time = time.time()

while time.time() - start time < 5 and immapp.nb.is running():
if not stream data["paused"]:
Add new data point
new_value = np.sin(time.time()) + random.gauss(0, 0.1)
stream data["values"].append(new value)

Keep buffer size limited
if len(stream data["values"]) > stream data["max points"]:

January 21, 2026 38 of 76

stream data["values"].pop(0)
await asyncio.sleep(0.01) # Yield control to the event loop

print(f"v Stream finished. Final count: {len(stream data['values'])}
points")

Run the streaming loop
await stream data loop()

Starting data stream... (will run for 10 seconds)
v Stream finished. Final count: 492 points

Video demonstration:

3

mgui_bundi

8 notebook_runners.ipynb U £3 @ deme_interactive_notebookipynb U & ! _tocyml M @ nbpy 1, M @ o

docs > book > python > @ notebook_runners.ipynb > M Example: Real-Time Data Stream Simulation > Mé Simulate Data Stream > & #
% Generate -+ Code -+ Markdown | > RunAll "D Restart *= Clear All Outputs | & Jupyter Variables = Outline -+ B v314 (314.2) (Python 3.14.2)

Example: Real-Time Data Stream Simulation

This example simulates a live data stream that continuously updates, like you might see in a monitoring dashbeard or during ML training.

:::{tip} Refer to the "video demonstration" below for a demo of how the cells below will render on your screen. ::

Start the GUI

The cell below instantiate the application data (stream_data) and starts a GUI application that displays the live data stream.

from imgui_bundle import immapp, imgui, hello_imgui, implot
import numpy as np
import

Lo BY G OE

Streaming data buffer

stream_data = {

| "values": (],
"max_points": 508,
"paused”: False

def streaming gui():
""“GUI that shows a live streaming plot™""
imgui.text("Live Data Stream")
imgui.text(f"Points: {len(stream_datal'values'])}")

Control buttons
if imgui.button("Pause” if not stream_data["paused”] else “"Resume"):

stream_data["paused”] = not stream_datal"paused”]

imgui.same_line()

> 0:00/0:15

Figure 10: Demonstration of the real-time data stream simulation in a Jupyter
notebook.

2.g.v. Example: Real-Time AI Training and tuning:
Video demonstration on youtube

Figure 11: Real-Time AI Training and tuning with Dear ImGui Bundle in Jupyter
Notebooks

Links to notebooks

« notebook_ml_training_ async.ipynb
« notebook_ml_training_threaded.ipynb

January 21, 2026 39 of 76

https://github.com/pthom/imgui_bundle/blob/main/docs/book/python/notebook_ml_training_async.ipynb
https://github.com/pthom/imgui_bundle/blob/main/docs/book/python/notebook_ml_training_threaded.ipynb

2.h. Deploy to the web with Pyodide

Dear ImGui Bundle applications can be effortlessly deployed to the web using
Pyodide, enabling Python code to run directly in web browsers. This capability allows
developers to share interactive GUI applications without requiring users to install any
software.

Note: Pyodide cannot use large native packages (like TensorFlow or PyTorch),
and initial loading can be slow.

=== Pyodide Minimal Example

With Pyodide, web deployment is as easy as copying this HTML template. The
Python code is unchanged from what you’d use for desktop.

<ldoctype html>
<html>
<head>
<style>
html, body { width: 100%; height: 100%; margin: 0; }
#canvas { display: block; width: 100%; height: 100%;}
</style>
<script src="https://cdn.jsdelivr.net/pyodide/v0.28.2/full/pyodide.
js"></script>
</head>
<body>
<canvas id="canvas" tabindex="0"></canvas>
<script type="text/javascript">
// Start of Python code

// Write your python code here
pythonCode = °
from imgui bundle import imgui, immapp

def gui():
imgui.text(f"hello, world")

immapp.run(gui)

// End of Python code

async function main(){

// This enables to use right click in the canvas
document.addEventListener('contextmenu', event =>

event.preventDefault());
// Load Pyodide
let pyodide = await loadPyodide();
// Setup SDL, cf https://pyodide.org/en/stable/usage/sdl.html
let sdl2Canvas = document.getElementById("canvas");
pyodide.canvas.setCanvas2D(sdl2Canvas);
pyodide. api. skip unwind fatal error = true; // SDL requires to

January 21, 2026 40 of 76
Yy

enable an opt-in flag
// Load imgui bundle
await pyodide.loadPackage("imgui bundle");
// Run the Python code
pyodide. runPython(pythonCode);
}
main();
</script>
</body>
</html>

2.h.i. A more advanced example:

« animated heart,
« source code

® @® Hello!

2.h.ii. Online Python playground:

With this online playground, you can edit and run imgui apps in the browser,
without installing anything.

January 21, 2026

41 of 76

https://traineq.org/imgui_bundle_online/projects/min_bundle_pyodide_app/demo_heart.html
https://traineq.org/imgui_bundle_online/projects/min_bundle_pyodide_app/demo_heart.source.txt
https://traineq.org/imgui_bundle_online/projects/imgui_bundle_playground/

This is a simple example of the Lorenz Att

bec:

5 The term +*butterfly effectsx in popular m
of

import numpy as np
from imgui_bundle import implot3d, immapp,
from dataclasses import dataclass

@dataclass
class LorenzParams:

PARAMS = LorenzParams ()

class AnimatedLorenzTrajectory:

mpletely different trajectories.

(=4
oY
=)

traineq.org Q

EEEISEG R Animated 3d plot: butterfly effect

ofibo Initial Delta Reset

@ (] &apersonal < =}

e code. Ins

Full

Lorenz Attractor & Butterfly Effect

ause of a small initial difference, ill

the Lorenz attractor, namely that tiny (

signa: float = 10.0
rho: float = 28.0

beta: float = 8.0 / 3.0
dt: float = 0.01
max_size: int = 2000

__init_ (self, x, y, 2
self.xs = np.array([x])
self.ys = np.array([y])
self.zs = np.array([2])

I
®

def step(self):
X, y, z = self.xs[-1], self.ys[-1]
dx = PARAMS.sigma * (y - x)

self.xs = np.concatenate([self.xs,

Figure 13: A browser window showing the playground: to the right an interactive
demo of the butterfly effect using a 3D plot, and to the left the python code that

January 21, 2026

creates it.

42 of 76

3. For C++ USERS

3.a. C++ Installation

3.a.i. Integrate Dear ImGui Bundle in your own project in 5 minutes:

The easiest way to use Dear ImGui Bundle in an external project is to use the
template available at https://github.com/pthom/imgui_bundle_template.

This template includes everything you need to set up your own project.
3.a.ii. Build from source:

If you choose to clone this repo, follow these instructions:

git clone https://github.com/pthom/imgui bundle.git

cd imgui_bundle

git submodule update --init --recursive # (1)

mkdir build

cd build

cmake .. -DIMMVISION FETCH OPENCV=ON # (2)
make -j

(1) Since there are lots of submodules, this might take a few minutes

(2) The flag -DIMMVISION_FETCH_OPENCV=ON is optional. If set, a minimal
version of OpenCV will be downloaded a compiled at this stage (this might require a
few minutes)

The immvision module will only be built if OpenCV can be found. Otherwise, it will
be ignored, and no error will be emitted.

If you have an existing OpenCV install, set its path via:
cmake .. -DOpenCV_DIR=/.../path/to/OpenCVConfig.cmake
Tip
There are lots of CMake options to customize the build. See CMakeLists.txt
3.a.iii. Run the C++ demo:
If you built ImGuiBundle from source, Simply run build/bin/demo_imgui_bundle.
The source for the demos can be found inside bindings/imgui_bundle/demos_cpp.
Tip

Consider demo_imgui_bundle as a manual with lots of examples and related code
source. It is always available online

January 21, 2026 43 of 76

https://github.com/pthom/imgui
https://github.com/pthom/imgui_bundle_template
https://github.com/pthom/imgui_bundle/blob/main/CMakeLists.txt

3.b. Assets folder
(for C++)

HelloImGui and ImmApp applications rely on the presence of an assets/ folder.

This folder stores:

+ Default fonts used by the markdown renderer (if the markdown addon is used).
« All the resources (images, fonts, etc.) used by the application. Feel free to add

any resources there!

Assets folder location

The assets folder should be placed in the same folder as the CMakeLists.txt for the
application (the one calling imgui_bundle_add_app)

Typical layout of the assets folder

assets/
+-- app_settings/
| +-- icon.png
should be square

converted
I I
platform (except Android)
| +-- apple/
I I
I I
Info.macos.plist)
I I
| +-- android/
will be deployed

+-- Info.plist

I
| | +-- res/
I I

resolutions

I I
them:

Image Asset
| +-- emscripten/

+--

| | -- shell.emscripten.html

"configured"

| +-- custom.js
deployed
I

+-- fonts/
| +-- DroidSans.ttf

January 21, 2026

[| -- AndroidManifest.xml

+-- mipmap-xxxhdpi/

#

#

#

Application settings
This will be the app icon, it

and at least 256x256. It will be
to the right format, for each
mac0S and i0S app settings
(or Info.ios.plist +
Android app settings: files here
Optional manifest
Optional icons for different
Use Android Studio to generate
right click on res/ => New >
Emscripten shell file

(this file will be cmake

to add the name and favicon)
Any custom file here will be

in the emscripten build folder

Default fonts used by HelloImGui

44 of 76

to

| +-- fontawesome-webfont.ttf # improve text rendering (esp. on
High DPI)

| | # if absent, a default LowRes font

is used.
| |
| +-- Roboto/ # Optional: fonts for markdown
| +-- LICENSE.txt
| +-- Roboto-Bold.ttf
| +-- Roboto-BoldItalic.ttf
| +-- Roboto-Regular.ttf
| +-- Roboto-RegularItalic.ttf
| +-- Inconsolata-Medium.ttf
+-- images/
+-- markdown broken image.png # Optional: used for markdown
+-- world.png # Add anything in the assets
folder!

If needed, change the assets folder location:

Call HelloImGui: :SetAssetsFolder() at startup. Or specify its location in CMake
via imgui_bundle add app(app _name file.cpp ASSETS LOCATION "path/to/
assets").

Where to find the default assets
You can download the default assets as a zip file.

Look at the folder imgui_bundle/bindings/imgui_bundle/assets to see its content.

January 21, 2026 45 of 76

https://traineq.org/ImGuiBundle/assets.zip
https://github.com/pthom/imgui_bundle/tree/main/bindings/imgui_bundle/assets

3.c. Multiplatform C++ applications

When developing C++ applications, Hello ImGui and Dear ImGui Bundle offer an
excellent support for multiplatform applications.

See this tutorial video for Hello ImGui:

January 21, 2026 46 of 76

January 21, 2026 47 of 76

https://www.youtube.com/watch?v=dArP4lBnOr8

Tip
The principle with Dear ImGui Bundle is the same as described in the video, just

use the dedicated Dear ImGui Bundle project template, and use
imgui bundle add app

January 21, 2026 48 of 76

3.d. Debug native C++ in python bindings

ImGui Bundle provides tooling to help you debug the C++ side, when you encounter
a bug that is difficult to diagnose from Python.

It can be used in two steps:

1 Edit the file pybind_native debug/pybind_native debug.py. Change its content
so that it runs the python code you would like to debug. Make sure it works when
you run it as a python script.

2. Now, debug the C++ project pybind_native_debug which is defined in the
directory pybind_native_debug/. This will run your python code from C++,
and you can debug the C++ side (place breakpoints, watch variables, etc).

January 21, 2026 49 of 76

4. RunNers (HELLo IMGut & IMMAPP)

4.a. Intro to Runners

ImGui Bundle uses two main libraries to manage the application lifecycle: Hello
ImGui and ImmApp

4.a.i. Hello ImGui vs InmApp:

« Hello ImGui: A “starter pack” for Dear ImGui. It handles window creation,
backend initialization (SDL, GLFW, etc.), cross-platform assets, docking, and
more.

« ImmApp (Immediate App): A thin wrapper around Hello ImGui specifically
designed for ImGui Bundle. Its main purpose is to simplify the initialization of
add-ons (like ImPlot or Markdown) that require specific setup.

4.aii. Starting an Application:

The simplest way to start an application is to use immapp. run() (Python) or
ImmApp: :Run() (C++).

Python

In Python, immapp. run accepts a gui_function and several optional parameters
to quickly configure the window and add-ons.

from imgui bundle import immapp, imgui

def gui():
imgui.text("My App")

immapp. run(
gui,
window title="Hello",
window size=(800, 600)

C++

In C++, you typically use a lambda or a function pointer for the GUI, and pass
configuration via SimpleRunnerParams.

#include "immapp/immapp.h"
#include "imgui.h"

int main() {
auto gui = [1() { ImGui::Text("My App"); };
ImmApp::Run(gui, "Hello", {800, 600});
return 0;

January 21, 2026 50 of 76
Yy

https://github.com/pthom/hello_imgui

Note

You may also call hello_imgui.run() (Python) or HelloImGui: :Run() (C++), but
in that case you cannot use addons, such as ImPlot; unless you initialize them
manually.

4.a.iii. Activating Add-ons with InmApp:

Many libraries in the bundle (like ImPlot or imgui_md) require initialization at
startup (e.g., creating contexts or loading specific fonts). InmApp manages this via
AddOnsParams.

Python
from imgui_bundle import immapp, implot, imgui md

def gqui():
imgui md.render("# Title")
if implot.begin plot("My Plot"):
...
implot.end plot()

immapp. run(
gui,
with_implot=True, # Activates ImPlot context
with markdown=True # Loads Markdown fonts

C++
#include "immapp/immapp.h"

int main() {
auto gui = [1() { /* ... */ };

HelloImGui: :SimpleRunnerParams runnerParams;
runnerParams.guiFunction = gui;

ImmApp: :AddOnsParams addons;
addons.withImplot = true;

addons.withMarkdown = true;

ImmApp::Run(runnerParams, addons);
return 0;

4.a.iv. Advanced: Manual Rendering:

January 21, 2026 51 of 76

If you need complete control over the render loop, you can use the functions inside
hello imgui.manual render, or immapp.manual render, instead of the standard
run() functions.

Python
from imgui bundle import imgui, hello imgui, immapp

Setup

runner_params = hello_imgui.RunnerParams()
runner_params.callbacks.show gui = lambda: imgui.text("Hello, ImGui
Bundle!")

addons = immapp.AddOnsParams()

addons.with implot = True
immapp.manual_render.setup from runner params(runner_params, addons)

Render loop

while not hello imgui.get runner params().app_shall exit:
hello _imgui.manual render.render()
Do other work here if needed

Cleanup
hello imgui.manual render.tear down()

C++

#include "imgui.h"
#include "hello imgui/hello imgui.h"
#include "immapp/immapp.h"

int main()
{
// Setup
HelloImGui: :RunnerParams runnerParams;
runnerParams.callbacks.ShowGui = []1() {
ImGui::Text("Hello, ImGui Bundle!");
b
ImmApp: :AddOnsParams addons;
addons.withImplot = true;
ImmApp: :ManualRender: :SetupFromRunnerParams (runnerParams,
addons) ;

// Render loop

while (!'HelloImGui::GetRunnerParams().app_shall exit) {
ImmApp: :ManualRender: :Render();
// Do other work here if needed

// Cleanup
ImmApp: :ManualRender: : TearDown() ;

January 21, 2026 52 of 76
y

return 0;

This approach is useful for:

« Custom event loops
+ Integration with other frameworks
+ Fine-grained control over frame timing

(For python users, also see the page on async usage for more info and performance
tips.)

January 21, 2026 53 of 76

/python/python-async

4.b. Hello ImGui

Dear ImGui Bundle includes Hello ImGui, which is itself based on ImGui. “Hello
ImGui” can be compared to a starter pack that enables to easily write cross-platform
Gui apps for Windows, macOS, Linux, iOS, and emscripten.

4.b.i. API & Usage:
RunnerParams

Applications can be fully configured via RunnerParams (this incudes window size, app
icon, fps settings, etc.). hello _imgui.get runner params() will return the
runnerParams of the current application.

See the Application parameters doc.
API

See the “Hello ImGui” API doc.
4.b.ii. Features:

Multiplatform utilities

+ Truly multiplatform: Linux, Windows, macOS, iOS, Android, emscripten (with 4
lines of CMake code)

«+ Easily embed assets on all platforms (no code required)

« Customize app settings (icon and app name for mobile platforms, etc.- no code
required)

« Customize application icon on all platforms (including mobile and macOS - no
code required)

Dear ImGui Tweaks

« Power Save mode: reduce FPS when idling

« High DPI support: scale UI according to DPI, whatever the platform

+ Advanced layout handling: dockable windows, multiple layouts

« Window geometry utilities: autosize application window, restore app window
position

« Theme tweaking: extensive list of additional themes

+ Support for movable and resizable borderless windows

» Advanced font support: icons, emojis and colored fonts

» Integration with ImGui Test Engine: automate and test your apps

« Save user settings: window position, layout, opened windows, theme, user
defined custom settings

« Easily add a custom 3D background to your app

Backends

 Available platform backends: SDL2, Glfw3

January 21, 2026 54 of 76

https://github.com/pthom/hello_imgui
https://pthom.github.io/hello_imgui/book/doc_params.html
https://pthom.github.io/hello_imgui/book/doc_api.html

+ Available rendering backends: OpenGL3, Metal, Vulkan, DirectX

Note

The usage of Hello ImGui is optional. You can also build an imgui application
from scratch, in C++ or in python (see python example)

Tip
HelloImGui is fully configurable by POD (plain old data) structures. See their
description

4.b.iii. Advanced layout and theming with Hello ImGui::
See the demo named “demo_docking”, which demonstrates:

« How to handle complex layouts: you can define several layouts and switch
between them: each layout which will remember the user modifications and the
list of opened windows

« How to use theming

« How to store you own user settings in the app ini file

+ How to add a status bar and a log window

« How to reduce the FPS when idling (to reduce CPU usage)

Links:

+ See demo_docking.py

+ See demo_docking.cpp

+ Run this demo online

+ See a short video explanation about layouts on YouTube

January 21, 2026 55 of 76
Yy

https://github.com/pthom/imgui_bundle/tree/main/bindings/imgui_bundle/demos_python/demos_immapp/imgui_example_glfw_opengl3.py
https://pthom.github.io/hello_imgui/book/doc_params.html
https://github.com/pthom/imgui_bundle//blob/main/bindings/imgui_bundle/demos_python/demos_immapp/demo_docking.py
https://github.com/pthom/imgui_bundle//blob/main/bindings/imgui_bundle/demos_cpp/demos_immapp/demo_docking.cpp
https://traineq.org/ImGuiBundle/emscripten/bin/demo_docking.html
https://www.youtube.com/watch?v=XKxmz__F4ow

4.c. ImmApp - Immediate App

ImGui Bundle includes a library named ImmApp (which stands for Immediate App).
ImmApp is a thin extension of HellolImGui that enables to easily initialize the
ImGuiBundle addons that require additional setup at startup

4.ci. APL:

o C++ API-
« Python API

4.c.ii. How to start an application with addons:

Some libraries included by ImGui Bundle require an initialization at startup. ImmApp
makes this easy via AddOnParams.

The example program below demonstrates how to run an application which will use
implot (which requires a context to be created at startup), and imgui_md (which
requires additional fonts to be loaded at startup).

Python

import numpy as np
imgui bundle is a package that provides several imgui-related
submodules
from imgui bundle import (imgui, # first we import ImGui

implot, # ImPlot provides advanced
real-time plotting

imgui md, # imgui md: markdown rendering
for imgui

hello imgui, # hello imgui: starter pack
for imgui apps

immapp, # helper to activate addons
(like implot, markdown, etc.)

)

def gqui():

Render some markdown text

imgui md.render unindented("""

Render an animated plot with ImPlot

This example shows how to use "ImPlot’ to render an animated
plot,

and how to use “imgui md® to render markdown text (*this text!*).

)

Render an animated plot

if implot.begin plot(

title id="Plot",

size in em units (lem = height of a character)
size=hello_imgui.em to vec2(40, 20)):
np.arange(0, np.pi * 4, 0.01)

np.cos(x + imgui.get time())

< X
||

January 21, 2026 56 of 76

https://github.com/pthom/imgui_bundle/tree/main/external/immapp/immapp/runner.h
https://github.com/pthom/imgui_bundle/tree/main/bindings/imgui_bundle/immapp/immapp_cpp.pyi

implot.plot line("yl", x, y)
implot.end plot()

if imgui.button("Exit"):

hello _imgui.get runner params().app_shall exit = True

def main

():

This call is specific to the ImGui Bundle interactive manual.

from

imgui bundle.demos python import demo utils

demo_utils.set hello imgui demo_assets folder()

Run the app with ImPlot and markdown support
immapp.run(gui,

with implot=True,
with _markdown=True,
window size=(700, 500))

if name == " main_":
main()
C++
#include "immapp/immapp.h"
#include "imgui md wrapper/imgui md wrapper.h"
#include "implot/implot.h"
#include "demo utils/api demos.h"
#include <vector>
#include <cmath>
int main(int, char**)
{
constexpr double pi = 3.1415926535897932384626433;
std::vector<double> x, yl, y2;
for (double x =0; x <4 * pi; x += 0.01)
{
x.push back(x);
yl.push back(std::cos(_x));
y2.push back(std::sin(_x));
}
auto gui = [x,yl,y2]1()
{
ImGuiMd: :Render("# This is the plot of cosinus and
sinus"); // Markdown

if (ImPlot::BeginPlot("Plot"))
{

ImPlot::PlotLine("yl", x.data(), yl.data(), x.size());
ImPlot::PlotLine("y2", x.data(), y2.data(), x.size());

January 21, 2026

57 of 76

ImPlot: :EndPlot();
b
HelloImGui::SimpleRunnerParams runnerParams { .guiFunction =
gui, .windowSize = {600, 400} };
ImmApp: :AddOnsParams addons { .withImplot = true, .withMarkdown =
true };

ImmApp::Run(runnerParams, addons);

return 0;

January 21, 2026 58 of 76

4.d. Application Settings

ImGui applications usually store settings such as window positions, opened windows
(etc.), in a file “imgui.ini”. HelloImGui and ImmApp extend this functionality by
storing additional settings such as application layouts, status bar settings, and user-
defined custom settings.

4.d.i. Settings location:

By default, the settings are stored in a ini file whose named is derived from the
window title (i.e. runnerParams.appWindowParams.windowTitle). This is convenient
when developing, but not so much when deploying the app.

You can finely define where they are stored by filling runnerParams.iniFolderType
and runnerParams.iniFilename.

runnerParams.iniFolderType

Choose between: CurrentFolder, AppUserConfigFolder, AppExecutableFolder,
HomeFolder, TempFolder and DocumentsFolder.

Note

AppUserConfigFolder corresponds to ...\ [Username]\AppData\Roaming under
Windows, ~/ . config under Linux, ~/Library/Application Support under
macOS or i0OS

runnerParams.iniFilename

This will be the name of the ini file in which the settings will be stored. It can include
a subfolder, in which case it will be created under the folder defined by
runnerParams.iniFolderType.

Note

if left empty, the name of the ini file will be derived from
appWindowParams.windowTitle.

4.d.ii. Settings content:

The settings file contains, standard ImGui settings (window position, size, etc.), as
well as additional settings defined by HelloImGui:

« Application status: app window location, opened windows, status bar settings,
etc. See members named remember_xxx in the parameters doc for a complete
list.

« Settings for each application layout (see video for an example)

4.d.iii. Store custom settings:

January 21, 2026 59 of 76
y

https://github.com/pthom/hello_imgui/blob/master/src/hello_imgui/doc_params.md
https://www.youtube.com/watch?v=XKxmz__F4ow

You may store additional user settings in the application settings. This is provided as
a convenience only, and it is not intended to store large quantities of text data. See
related doc for more details.

January 21, 2026 60 of 76
Yy

https://github.com/pthom/hello_imgui/blob/master/src/hello_imgui/doc_api.md\#store-user-settings-in-the-ini-file

4.e. Tips

4.e.i. Correctly size and position the widgets:

It is almost always a bad idea to use fixed sizes. This will lead to portability issues,
especially on high-DPI screens.

Instead of using fixed pixel sizes, it is recommended to use sizes relative to the font
size, aka “em” units.

Tip
See the definition of the em CSS Unit.

To achieve this, you should multiply your positions and sizes by
ImGui::GetFontSize() (C++), or imgui.get font size() (Python).

In order to make this simpler, the HelloImGui: :EmToVec2 (C++) or
hello _imgui::em to vec2 (Python) function below can greatly reduce the friction: it
transforms a size in “em” units to a size in pixels.

Example with Python:
from imgui bundle import imgui, hello_imgui

def gui():
imgui.button("A button", hello imgui.em to vec2(10, 2)) # 1l0em x
2em button

Example with C++:

#include "imgui.h"
#include "hello imgui/hello imgui.h"

void qui() {
ImGui::Button("A button", HelloImGui::EmToVec2(10, 2)); // 1l0em x
2em button

}

Note

« EmSize(x) functions are also available to get only one dimension in pixels.
(e.g., hello_imgui.em_size(2) or HelloImGui: :EmSize(2)).
« EmToVec2 and EmSize are also available in the immapp module in Python, and

in the ImmApp namespace in C++.

January 21, 2026 61 of 76

https://en.wikipedia.org/wiki/Em_(typography)

5. SUPPORT

5.a. Support the project

Dear ImGui Bundle is a free and open-source project, and its development and
maintenance require considerable efforts.

If you find it valuable for your work — especially in a commercial enterprise or a
research setting — please consider supporting its development by making a donation.
Your contributions are greatly appreciated!

For commercial users seeking tailored support or specific enhancements, please
contact the author by email. Contribute

Quality contributions are always welcome! If you’re interested in contributing to the
project, whether through code, ideas, or feedback, please refer to the development
documentation. License

Dear ImGui Bundle is licensed under the MIT License

January 21, 2026 62 of 76

https://www.paypal.com/donate/?hosted_button_id=SHJ68RVDKURZA
https://github.com/pthom/imgui_bundle/blob/main/LICENSE

5.b. Closing words
5.b.i. Who is this project for:

Dear ImGui Bundle aims to make applications prototyping fast and easy, in a
multiplatform / multi-tooling context. The intent is to reduce the time between an
idea and a first GUI prototype down to almost zero.

It is well adapted for

« developers and researchers who want to switch easily between and research and
development environment by facilitating the port of research artifacts

« beginners and developers who want to quickly develop an application without
learning a GUI framework

5.b.ii. Who is this project not for:

You should prefer a more complete framework (such as Qt for example) if your intent
is to build a fully fledged application, with support for internationalization, advanced
styling, etc.

Also, the library makes no guarantee of ABI stability, and its API is opened to slight
adaptations and breaking changes if they are found to make the overall usage better
and/or safer.

5.b.iii. License:
The MIT License (MIT)
Copyright (c) 2021-2024 Pascal Thomet

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

5.b.iv. About the author:

January 21, 2026 63 of 76
y

Dear ImGui Bundle is developed by Pascal Thomet. I am reachable on my Github
page. I sometimes blog. There is a playlist related to ImGui Bundle on YouTube.

I have a past in computer vision, and a lot of experience in the trenches between
development and research teams; and I found ImGui to be a nice way to reduce the
delay between a research prototype and its use in production code.

I also have an inclination for self documenting code, and the doc you are reading was
a way to explore new ways to document projects.

5.b.v. How is Dear ImGui Bundle developed:

The development of the initial version of Dear ImGui Bundle took about one year at
full time.

The bindings are auto-generated thanks to an advanced parser, so that they are easy
to keep up to date.

Please be tolerant if you find issues! Dear ImGui Bundle is developed for free, under a
very permissive license, by one main author (and most of its API comes from external
libraries).

If you need consulting about this library or about the bindings generator in the
context of a commercial project, please contact me by email.

Contributions are welcome!
5.b.vi. Thanks:

Dear ImGui Bundle would not be possible without the work of the authors of “Dear
ImGui”, and especially Omar Cornut.

It also includes a lot of other projects, and I'd like to thank their authors for their
awesome work!

A particular mention for Evan Pezent (author of ImPlot), Cédric Guillemet (author of
ImGuizmo), Balazs Jako (author of ImGuiColorTextEdit), and Michal Cichon (author
of imgui-node-editor), and Dmitry Mekhontsev (author of imgui-md), Andy Borrel
(author of imgui-tex-inspect, another image debugging tool, which I discovered long
after having developed immvision).

Immvision was inspired by The Image Debugger, by Bill Baxter.

January 21, 2026 64 of 76

https://github.com/pthom
https://github.com/pthom
http://code-ballads.net/
https://www.youtube.com/playlist?list=PLaJx_KrDECZPzttQ77Gv8DD7OAUwmtWUc
https://www.miracleworld.net/
https://billbaxter.com/projects/imdebug/

6. DEVELOPPER DOCS

6.a. Intro - Developer docs

This section is for developers willing to build and modify the imgui_bundle library. It
covers topics such as building the library, updating dependencies, and adding new
features or bindings.

January 21, 2026 65 of 76
Yy

6.b. Repository folders structure

Below is the folders structure of Dear ImGui Bundle repository:

-/

+-- Readme.md -> bindings/imgui bundle/Readme.md

+-- Readme _devel.md

I

+-- _example integration/
easily use

| +-- CMakelLists.txt
+ app

| +-- assets/
template available a

| +-- hello world.main.cpp
pthom/imgui bundle template
I

+-- imgui_bundle cmake/
imgui bundle add app()

I I

can use

| +-- imgui bundle add app.cmake

one line

I
+-- bindings/

bindings

| +-- imgui_bundle/

| +-- assets/

need to

I I

I I

if you

I I

markdown

I I

| +-- demos_assets/

| +-- demos_cpp/

| +-- demos_python/

| +-- imgui/

| | +-- _init .pyi
| | +-- backends.pyi
| | +-- internal.pyi
I I +-- py.typed

| +-- implot.pyi

stubs

| +-- _init .py

| +-- init .pyi

| +-- hello imgui.pyi

| +--

other libs stubs

| +--

| +e-

I

+-- immapp/

January 21, 2026

H B W

doc

Demonstrate how to
imgui bundle in a C+
(this is a github

https://github.com/

a cmake function you

to create an app in

root for the python

assets/ folder: you

copy this folder

into your app folder

intend to use

assets used by demos
lots of C++ demos
lots of python demos
imgui stubs

implot

lots of

immapp:

66 of 76

immediate app

I I

I | +-- __init_ .py

I | +-- init .pyi

I | +-- icons_fontawesome.py

I | +-- immapp_cpp.pyi

I | +-- immapp utils.py

I | +-- py.typed

| +-- _imgui_bundle.cpython-38-darwin.so #

imGui bundle python

I I

library

| +-- glfw utils.py

| +-- python_backends/
implemented in pure python

| +-- py.typed

I

I

+-- cmake/

cmake utilities

| +-- add_imgui.cmake

I +--

I

+-- external/

bound libraries

| +-- CMakelLists.txt

| +-- imgui/

| | +-- bindings/

bindings

| | +-- imgui/
submodule

| +-- ImGuizmo/

| | +-- bindings/
bindings

| | +-- ImGuizmo/
submodule

| | +-- ImGuizmoPure/

wrappers to help

I I

generation

I I

| +-- ... lots of other bound libraries/
other bound libraries

| | +-- {lib_name}/
| | +-- bindings/

I I

| +-- _doc/

I I

| +-- bindings generation/
generate bindings

facilitate external

January 21, 2026

utilities

dynamic

Backends

Private

Root of all

ImGui root
ImGui

ImGui

ImGuizmo
ImGuizmo
Manual

bindings

Lots of

Script to

and to

67 of 76

| +-- _init_ .py

+-- all _external libraries.py

|
| +-- autogenerate all.py
| +e-

|
+-- SDL/SDL/

library (without

bindings)

+-- fplus/fplus/

without bindings

+-- glfw/glfw

without bindings

+-- 1g _cmake utils/
for bindings

I
+-- 1g_cmake utils.cmake
+--

+-- pybind native debug/

+-- src/

+-- CMakelLists.txt

+-- Readme.md

+-- pybind native debug.cpp
+-- pybind native debug.py

+-- imgui_ bundle/

library: almost empty,

to all external libraries

January 21, 2026

libraries

Linked
python
Library

Library

Cmake utils

generation

main cpp

but linked

68 of 76

6.c. Automated bindings: introduction

The bindings are generated automatically thanks to a sophisticated generator, which
is based on srcML.

The generator in provided by in litgen an automatic python bindings generator,
developed by the same author as Dear ImGui Bundle.

6.c.i. Installing the generator:
See the installation instructions (do a local installation).
6.c.ii. Quick information about the generator:

litgen (aka “Literate Generator”) is the package that will generate the python
bindings.

Its source code is available here.

It is heavily configurable by a wide range of options.

See for examples the specific options for imgui bindings generation.
6.c.iii. Folders structure:

In order to work on bindings, it is essential to understand the folders structure inside
Dear ImGui Bundle. Please study the dedicated doc.

6.c.iv. Study of a bound library generation:
Let’s take the example of the library ImCoolBar.
Tip
The processing of adding a new library from scratch is documented in Adding a

new library. It uses ImCoolBar as an example

Here is how the generation works for the library. The library principal files are
located in external/ImCoolBar:

external/ImCoolBar/ # Root folder for ImCoolBar
— ImCoolBar/ # ImCoolBar submodule
| — CMakeLists.txt # ImCoolBar code

| — ImCoolbar.cpp
| F— ImCoolbar.h
|

F— LICENSE
| L— README.md
L— bindings/ # Scripts for the bindings
generations & bindings
— generate imcoolbar.py # This script reads

ImCoolbar.h and generates:
| # - binding C++ code
in ./pybind_imcoolbar.cpp

January 21, 2026 69 of 76

https://www.srcml.org
https://pthom.github.io/litgen/litgen_book/00_00_intro.html
https://pthom.github.io/litgen/litgen_book/01_05_00_install_or_online.html\#install-litgen-locally
https://github.com/pthom/litgen
https://github.com/pthom/litgen/blob/main/src/litgen/options.py
https://github.com/pthom/imgui_bundle/blob/main/external/imgui/bindings/litgen_options_imgui.py
/devel-docs/structure
/devel-docs/bindings-newlib
/devel-docs/bindings-newlib

| # - stubs in

| # bindings/
imgui bundle/im cool bar pyi

— im cool bar.pyi -> ../../../bindings/imgui bundle/
im cool bar.pyi # this is a symlink!

L— pybind imcoolbar.cpp

The actual stubs are located here:

imgui_bundle/bindings/imgui_ bundle/

— im_cool bar.pyi # Location of the stubs

F— init .pyi # Main imgui bundle stub file, which
loads im cool bar.pyi

F— init .py # Main imgui_bundle python module which
loads

| # the actual im _cool bar module

— ...

And the library is referenced in a global generation script:

imgui bundle/external/bindings generation/

— autogenerate all.py # This script will call
generate _imcoolbar.py (among many others)

— all external libraries.py # ImCoolBar is referenced here

— ..

January 21, 2026 70 of 76

6.d. Update existing bindings

6.d.i. Introduction:

Run generate LIBNAME.py:

The process for updating bindings for a given library is straightforward:

1. Update the library submodule in external/LIBNAME/LIBNAME

2. Run the generation script in external/LIBNAME/generate LIBNAME.py

3. Compile and test python bindings (carefully study that nothing was broken)
4. Commit and push

For example with ImCoolBar, in order to update the bindings for ImCoolBar, one
needs to run:

python external/ImCoolBar/bindings/generate_imcoolbar.py

Submodules maintenance:
external/bindings_generation contains some scripts for the submodules maintenance.

See this extract of external/bindings_generation/all_external_libraries.py, which
shows that imgui and imgui_test_engine are using forks.

These forks include small modifications added for compatibility with imgui_bundle
(most modifications are small changes to accommodate with python bindings).

def lib imgui() -> Externallibrary:
return ExternallLibrary(
name="imgui",
official git url="https://github.com/ocornut/imgui.git",
official branch="docking",
fork git url="https://github.com/pthom/imgui.git"

def lib imgui test engine() -> ExternallLibrary:
return ExternallLibrary(
name="imgui test engine",
official git url="https://github.com/ocornut/imgui test engine.
git",
official branch="main",
fork git url="https://github.com/pthom/imgui test engine.git",
)

When using forked libraries, the git remote name for the fork is “fork”, and the
remote name for the official repository is “official”.

Reattach all submodules to their upstream branch

By default, all submodules, are in mode “detached head”. We need to attach them to
the correct remote/branch.

January 21, 2026 71 of 76

https://github.com/pthom/imgui_bundle/tree/main/external/bindings_generation
https://github.com/pthom/imgui_bundle/tree/main/external/bindings_generation/all_external_libraries.py

We can use the utilities from external/bindings_generation:
For example, external/bindings_generation/sandbox.py contains this:
from bindings _generation import all external libraries
all external libraries.reattach all submodules()
It will reattach all submodules to the correct remote/branch.
6.d.ii. Example: update imgui & bindings:
Tip
This video demonstrates from starts to finish the process of updating imgui and
its bindings (17 minutes).
Update imgui and imgui_test_engine:
First, add a tag to our forks

Since we will be updating our imgui and imgui_test_engine forks via a rebase, we
should push a tag, so that old versions remain accessible on GitHub.

In this example, the current version of imgui_bundle is v1.0.0-betal. So we push a
“bundle_1.0.0-betal” tag to the forks.

cd external/imgui/imgui

git tag "bundle 1.0.0-betal"
git push fork --tags

cd -

cd external/imgui test engine/imgui test engine
git tag "bundle 1.0.0-betal"

git push fork --tags

cd -

Then rebase our forks on the official branch changes
cd external/imgui/imgui

git rebase official/docking
cd -

cd external/imgui test engine/imgui test engine
git rebase official/main

cd -

Run generate_imgui.py:

Run generate_imgui

We will run external/imgui/bindings/generate_imgui.py.

It will generate the python bindings for imgui, imgui_internal and imgui_test_engine.

January 21, 2026 72 of 76

https://github.com/pthom/imgui_bundle/tree/main/external/bindings_generation/sandbox.py
https://youtu.be/QeBCxU7tn68
https://github.com/pthom/imgui_bundle/tree/main/external/imgui/bindings/generate_imgui.py

See main() function of generate_imgui.py:
def main():
autogenerate imgui()
autogenerate imgui internal()
autogenerate _imgui_ test engine()
Examine the changes Look at the changes, and check if they look ok
Compile & Test:
Correct possible compilation errors due to breaking changes in imgui’s API
Test in C++

Run demo_imgui bundle

(demo_imgui_bundle is a global demonstration program, that uses most of the feature
of all libraries)

Test in Python

Run demo_imgui bundle.py

Update forked submodules::

if some forked submodules required to be changed:

+ tag them, push the tag
« rebase the fork branch on the official branch
+ push the changes

January 21, 2026 73 of 76
Yy

6.e. Adding a new library to the bindings
This example is based on the addition of ImCoolBar, which was added in Oct 2023.

6.e.i. Step 1: Reference the new library:
Tip

All the modifications done in step 1 can be seen in this commit.

Step 1-a: Add needed folders, files and submodules inside external/:

Add the library as a submodule in external/lib_name/lib_name:

If the library can be included without adaptations for inclusion inside ImGui Bundle,
you can add it directly as a submodule.

mkdir external/ImCoolBar
git submodule add https://github.com/aiekick/ImCoolBar.git external/
ImCoolBar/ImCoolBar

However, if it requires adaptations, you need to create a fork (it was the case for
ImCoolBar): So, the following actions were done separately:

« ImCoolBar was cloned into github.com/pthom/ImCoolBar.git
+ abranch imgui_bundle was created and pushed to github. It will contain the
adaptations and bug corrections for imgui_bundle.

Then, we add this fork as a submodule.

git submodule add https://github.com/pthom/ImCoolBar.git external/
ImCoolBar/ImCoolBar

cd external/ImCoolBar/ImCoolBar

git checkout imgui_ bundle

cd -

Create the folder external/lib_name/bindings/:

Copy the folder external/bindings_generation/bindings_generator_template into
external/lib_name/bindings/

cp -r external/bindings _generation/bindings generator_ template external/
ImCoolBar/bindings

Rename files in external/lib_name/bindings:

After having copied the template files, we need to rename them. In the example of
ImCoolbar, we will rename them as follows:

mv external/ImCoolBar/bindings/generate LIBNAME.py external/ImCoolBar/
bindings/generate_imcoolbar.py

mv external/ImCoolBar/bindings/pybind LIBNAME.cpp external/ImCoolBar/
bindings/pybind imcoolbar.cpp
im_cool _bar will be the final name of the python module:

January 21, 2026 74 of 76

https://github.com/aiekick/ImCoolBar
https://github.com/pthom/imgui_bundle/commit/68e6f3b3a5e812a1a3ddea275ad24296df5b7ce6
http://github.com/pthom/ImCoolBar.git

imgui bundle.im_cool bar
mv external/ImCoolBar/bindings/LIBNAME.pyi external/ImCoolBar/bindings/
im cool bar.pyi

Move external/ImCoolBar/bindings/im_cool_bar.pyi to bindings/imgui_bundle/:

The stub file (*.pyi) must be inside bindings/imgui_bundle. In order to facilitate
development, we will create a symlink to it inside external/ImCoolBar/bindings/

mv external/ImCoolBar/bindings/im cool bar.pyi bindings/imgui bundle/
im cool bar.pyi

cd external/ImCoolBar/bindings/

n -s ../../../bindings/imgui bundle/im cool bar.pyi .

cd -

Final folder structure:

We end up with the following structure:

external/ImCoolBar/
— ImCoolBar/ # Note that the submodule is inside
| F— CMakelists.txt # external/ImCoolBar/ImCoolBar/ !!!

| F— ImCoolbar.cpp
| — ImCoolbar.h
| — LICENSE
| L— README.md
L— bindings/
F— im cool bar.pyi # We will edit and rename those
files later
— generate imcoolbar.py -> symlink to ../../../bindings/
imgui_bundle/im_cool bar.pyi
L— pybind imcoolbar.cpp

Step 1-b: Update python generator manager:
Update external/bindings_generation/all_external_libraries.py
Add a function that returns info about this new library:

def 1ib imcoolbar() -> ExternallLibrary:

return ExternallLibrary(
name="ImCoolBar",
official git url="https://github.com/aiekick/ImCoolBar.git",
official branch="master",
fork git url="https://github.com/pthom/ImCoolBar.git",
fork_branch="imgui bundle"

)

ALL LIBS = [

lib_imgui(), # must be first as it declare bindings used by the
next ones

...

January 21, 2026 75 of 76

lib_imcoolbar(), # Add the lib here
...

Step 1-c: Update the C++ sources to include the new lib binding generation:
In external/CMakeLists.txt: Add a cmake directive to compile the new library.

If the library is "simple" to compile you can use
“add_simple external library with sources®
add simple external library with sources(imcoolbar ImCoolBar)

In external/bindings_generation/cpp/all_pybind_files.cmake:
add external/ImCoolBar/bindings/pybind imcoolbar.cpp

Note

the script external/bindings_generation/autogenerate_all.py will also regenerate
this file from scratch.

In external/bindings_generation/cpp/pybind_imgui_bundle.cpp:
Add the bindings

// ... Near the start of the file, add a new function declaration

void py init module imgui command palette(py::module& m);

void py init module implot internal(py::module& m);

void py init module imcoolbar(py::module& m); // added this line
//

void py init module imgui bundle(py::module& m)
{
// ...

// At the end of py init module_imgui bundle, register your new
python module
auto module imcooolbar = m.def submodule("im cool bar"); // the

python module will be known as imgui bundle.im cool bar
py _init module imcoolbar(module_imcooolbar);

Now, run cmake.
Step 1-d: Edit and adapt the generation scripts:

Edit the 3 files inside external/ImCoolBar/bindings and replace occurrences of
LIBNAME with appropriate values.

Step 1-e: Edit and adapt the imgui_bundle init scripts:

In bindings/imgui_bundle

January 21, 2026 76 of 76

	1 Introduction
	1.a Bundled Libraries
	1.a.i Full list of included libraries
	1.a.ii Key Features
	1.a.ii.i Works everywhere
	1.a.ii.ii First class support for Python
	1.a.ii.iii Easy to use & well documented
	1.a.ii.iv Always up-to-date

	1.b Immediate GUI
	1.b.i What is an Immediate GUI
	1.b.ii Dear ImGui
	1.b.iii Get started in no time with Hello ImGui and ImmApp
	1.b.iii.i Hello World in 4 lines
	1.b.iii.ii A more complete example with plots

	1.b.iv Quickly deploy your apps on the web

	1.c Interactive Manuals
	1.c.i Dear ImGui Manual
	1.c.ii Dear ImGui Bundle Interactive Manual
	1.c.iii Online Python playground

	1.d Examples and Gallery
	1.d.i Examples in the interactive manual
	1.d.i.i Complex layouts with docking windows
	1.d.i.ii Custom 3D Background
	1.d.i.iii Display & analyze images with ImmVision
	1.d.i.iv Test & Automation with ImGui Test Engine

	1.d.ii Example Applications Gallery
	1.d.ii.i 4K4D
	1.d.ii.ii HDRview

	1.e Resources
	1.e.i Interactive demos & manuals
	1.e.ii Documentation websites
	1.e.iii YouTube Playlist
	1.e.iv DeepWiki
	1.e.v Repositories
	1.e.vi Full PDF manuals for LLMs

	2 For Python users
	2.a Introduction
	2.a.i Immediate GUI in Python with Dear ImGui Bundle
	2.a.ii Anatomy of an application with Dear ImGui Bundle
	2.a.iii Deploy your applications

	2.b Install for Python
	2.b.i Install from pypi
	2.b.ii Install from source
	2.b.iii Run the python demo

	2.c Tips
	2.c.i Context Managers
	2.c.ii Advanced glfw callbacks
	2.c.iii Display Matplotlib plots in ImGui
	2.c.iv Read the libraries doc as a Python developer
	2.c.iv.i General advices
	2.c.iv.ii Enums and TextInput
	2.c.iv.iii Dear ImGui C++ vs Python API

	2.d Assets folder
	2.e Pure Python Backends
	2.f Async Support
	2.f.i Overview
	2.f.ii Quick Example
	2.f.iii Automatic FPS Optimization
	2.f.iv Signature Patterns
	2.f.iv.i 1. Simple GUI Function
	2.f.iv.ii 2. Full RunnerParams (Maximum Control)

	2.f.v Yielding to the Event Loop
	2.f.vi Troubleshooting
	2.f.vi.i GUI Freezes
	2.f.vi.ii Exceptions in the async GUI

	2.g Jupyter Notebook support
	2.g.i Introduction
	2.g.ii Blocking mode
	2.g.ii.i API
	2.g.ii.ii Example

	2.g.iii Non blocking mode
	2.g.iii.i API
	2.g.iii.i.i start
	2.g.iii.i.ii is_running
	2.g.iii.i.iii stop

	2.g.iii.ii Example
	2.g.iii.ii.i Start the application
	2.g.iii.ii.ii Interact while the application is running
	2.g.iii.ii.iii Check if the application is running
	2.g.iii.ii.iv Stop the application
	2.g.iii.ii.v Video demonstration

	2.g.iv Example: Real-Time Data Stream Simulation
	2.g.iv.i Start the GUI
	2.g.iv.ii Simulate Data Stream
	2.g.iv.iii Video demonstration

	2.g.v Example: Real-Time AI Training and tuning

	2.h Deploy to the web with Pyodide
	2.h.i A more advanced example
	2.h.ii Online Python playground

	3 For C++ users
	3.a C++ Installation
	3.a.i Integrate Dear ImGui Bundle in your own project in 5 minutes
	3.a.ii Build from source
	3.a.iii Run the C++ demo

	3.b Assets folder
	3.c Multiplatform C++ applications
	3.d Debug native C++ in python bindings

	4 Runners (Hello ImGui & ImmApp)
	4.a Intro to Runners
	4.a.i Hello ImGui vs ImmApp
	4.a.ii Starting an Application
	4.a.iii Activating Add-ons with ImmApp
	4.a.iv Advanced: Manual Rendering

	4.b Hello ImGui
	4.b.i API & Usage
	4.b.ii Features
	4.b.iii Advanced layout and theming with Hello ImGui:

	4.c ImmApp - Immediate App
	4.c.i API
	4.c.ii How to start an application with addons

	4.d Application Settings
	4.d.i Settings location
	4.d.ii Settings content
	4.d.iii Store custom settings

	4.e Tips
	4.e.i Correctly size and position the widgets

	5 Support
	5.a Support the project
	5.b Closing words
	5.b.i Who is this project for
	5.b.ii Who is this project not for
	5.b.iii License
	5.b.iv About the author
	5.b.v How is Dear ImGui Bundle developed
	5.b.vi Thanks

	6 Developper docs
	6.a Intro - Developer docs
	6.b Repository folders structure
	6.c Automated bindings: introduction
	6.c.i Installing the generator
	6.c.ii Quick information about the generator
	6.c.iii Folders structure
	6.c.iv Study of a bound library generation

	6.d Update existing bindings
	6.d.i Introduction
	6.d.i.i Run generate_LIBNAME.py
	6.d.i.ii Submodules maintenance

	6.d.ii Example: update imgui & bindings
	6.d.ii.i Update imgui and imgui_test_engine
	6.d.ii.ii Run generate_imgui.py
	6.d.ii.iii Compile & Test
	6.d.ii.iv Update forked submodules:

	6.e Adding a new library to the bindings
	6.e.i Step 1: Reference the new library
	6.e.i.i Step 1-a: Add needed folders, files and submodules inside external/
	6.e.i.i.i Add the library as a submodule in external/lib_name/lib_name
	6.e.i.i.ii Create the folder external/lib_name/bindings/
	6.e.i.i.iii Rename files in external/lib_name/bindings
	6.e.i.i.iv Move external/ImCoolBar/bindings/im_cool_bar.pyi to bindings/imgui_bundle/
	6.e.i.i.v Final folder structure

	6.e.i.ii Step 1-b: Update python generator manager
	6.e.i.iii Step 1-c: Update the C++ sources to include the new lib binding generation
	6.e.i.iv Step 1-d: Edit and adapt the generation scripts
	6.e.i.v Step 1-e: Edit and adapt the imgui_bundle init scripts

