
Open Access

Dear ImGui Bundle

Published Jan 21, 2026

1. Introduction

1.a. Bundled Libraries

1.a.i. Full list of included libraries:

Dear ImGui Bundle includes the following libraries, which are available in C++ and in

Python:

• Dear ImGui : Bloat-free Graphical User interface with minimal dependencies

• ImGui Test Engine : Dear ImGui Tests & Automation Engine

• Hello ImGui : cross-platform Gui apps with the simplicity of a “Hello World”

app

• ImPlot : Immediate Mode Plotting

• ImPlot3D : Immediate Mode 3D Plotting

• ImGuizmo : Immediate mode 3D gizmo for scene editing

• ImGuiColorTextEdit : Colorizing text editor for ImGui

• imgui-node-editor : Node Editor built using Dear ImGui

• imgui_md : Markdown renderer for Dear ImGui using MD4C parser

• ImmVision : Immediate image debugger and insights

• NanoVG : Antialiased 2D vector drawing library on top of OpenGL

• imgui_tex_inspect : A texture inspector tool for Dear ImGui

• ImFileDialog : A file dialog library for Dear ImGui

• portable-file-dialogs : OS native file dialogs library (C++11, single-header)

• imgui-knobs : Knobs widgets for ImGui

• imspinner : Set of nice spinners for imgui

• imgui_toggle : A toggle switch widget for Dear ImGui

• ImCoolBar : A Cool bar for Dear ImGui

• imgui-command-palette : A Sublime Text or VSCode style command palette in

ImGui

A big thank you to their authors for their awesome work!

1.a.ii. Key Features:

Works everywhere:

• Cross-platform in C++ and Python: Works on Windows, Linux, macOS, iOS,

Android, and WebAssembly!

• Web ready: Develop full web applications, in C++ via Emscripten; or in Python

thanks to ImGui Bundle’s integration within Pyodide

First class support for Python:

• Python Bindings: Using Dear ImGui Bundle in Python is extremely easy and

productive.

January 21, 2026 1 of 76

https://github.com/ocornut/imgui
https://github.com/ocornut/imgui_test_engine
https://github.com/pthom/hello_imgui
https://github.com/epezent/implot
https://github.com/brenocq/implot3d
https://github.com/CedricGuillemet/ImGuizmo
https://github.com/BalazsJako/ImGuiColorTextEdit
https://github.com/thedmd/imgui-node-editor
https://github.com/mekhontsev/imgui_md
https://github.com/pthom/immvision
https://github.com/memononen/nanovg
https://github.com/andyborrell/imgui_tex_inspect
https://github.com/pthom/ImFileDialog
https://github.com/samhocevar/portable-file-dialogs
https://github.com/altschuler/imgui-knobs
https://github.com/dalerank/imspinner
https://github.com/cmdwtf/imgui_toggle
https://github.com/aiekick/ImCoolBar
https://github.com/hnOsmium0001/imgui-command-palette

|

• Beautifully documented Python bindings and stubs: The Python bindings

stubs reflect the C++ API and documentation, serving as a reference and aiding

autocompletion in your IDE. See for example the stubs for imgui, and for

hello_imgui.

• Use it to create standalone apps (on Windows, macOS, and Linux), or to add

interactive UIs to your notebooks. Deploy your apps on the web with ease,

using Pyodide.

Easy to use & well documented:

• The Immediate Mode GUI (IMGUI) paradigm is simple and powerful, letting you

focus on the creative aspects of your projects.

• Easy to use, yet very powerful: Start your first app in 3 lines.

• Interactive Demos and Documentation: Quickly get started with our

interactive manual and demos that showcase the capabilities of the pack. Read

or copy-paste the source code (Python and C++) directly from the interactive

manual!

Always up-to-date:

• Always up-to-date: The libraries are always very close to the latest version of

Dear ImGui. This is also true for Python developers, since the bindings are

automatically generated.

• Fast: Rendering is done via OpenGL (or any other renderer you choose),

through native code.

January 21, 2026 2 of 76

https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/imgui/__init__.pyi
https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/hello_imgui.pyi
https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/hello_imgui.pyi
https://pyodide.org/en/stable/

|

1.b. Immediate GUI

1.b.i. What is an Immediate GUI:

An “Immediate Mode Graphical User Interface” lets you build user interfaces directly

in code. This keeps the UI and app state in perfect sync with minimal boilerplate.

This approach is especially popular for quick prototyping and tools because it’s

intuitive, flexible, easy to maintain, and trivial to debug.

The example below shows a documented example to explain the Immediate Mode

GUI paradigm:

Python

from imgui_bundle import imgui, immapp

counter = 0 # our app state

The gui() function is called every frame, so the UI updates in real
time.
def gui():
 global counter

January 21, 2026 3 of 76

|

 # The state of the UI is always in sync with the app state,
 # via standard variables: debugging UI becomes trivial!
 imgui.text(f"Counter ={counter}")

 # We can display a button, and handle its action in one line:
 if imgui.button("increment counter"):
 counter += 1
 # Below, we can also set the counter value via a slider between 0
and 100
 value_changed, counter = imgui.slider_int("Set counter", counter,
0, 100)

Run the app (in one line!)
immapp.run(gui)

C++

#include "immapp/immapp.h"
#include "imgui.h"

int counter = 0; // our app state

// The gui() function is called every frame, so the UI updates in
real time.
void gui()
{
 // The state of the UI is always in sync with the app state,
 // via standard variables: debugging UI becomes trivial!
 ImGui::Text("Counter =%d", counter);

 // We can display a button, and handle its action in one line:
 if (ImGui::Button("increment counter"))
 counter += 1;
 // Below, we can also set the counter value via a slider between
0 and 100
 ImGui::SliderInt("Set counter", &counter, 0, 100);
}

// Run the app (in one line!)
int main(int, char **) { ImmApp::Run(gui); }

It produces this simple app:

January 21, 2026 4 of 76

|

Immediate Mode GUI does not mean that you cannot separate concerns!

You can still (and should) maintain a separate application state. The key difference is

that your GUI can interact directly with that state in a straightforward way, without

the need to maintain a separate UI state or complex event handling systems.

1.b.ii. Dear ImGui:

The most popular Immediate Mode GUI library is Dear ImGui, a powerful C++

library originally created for real-time tools in game engines, now widely used in

many industries, with over 60k stars on GitHub.

Dear ImGui Bundle includes Dear ImGui plus many extra libraries, making it ideal for

rapid prototyping as well as building complex apps with advanced widgets, plotting,

node editors; in C++ and Python.

1.b.iii. Get started in no time with Hello ImGui and ImmApp:

With Hello ImGui and ImmApp (both included in Dear ImGui Bundle), you can create

a full-featured GUI application with just a few lines of code.

• Hello ImGui is a library based on ImGui that enables to easily create

applications with ImGui. It handles window creation, backend initialization

(SDL, GLFW, etc.), cross-platform assets, docking layout, and more.

• ImApp (aka “Immediate App”, a submodule of ImGuiBundle) is a thin extension

of Hello ImGui that enables to easily initialize the ImGuiBundle addons that

require additional setup at startup.

Hello World in 4 lines:

4 lines are enough to start a GUI application!

Python

January 21, 2026 5 of 76

https://github.com/ocornut/imgui
https://pthom.github.io/hello_imgui
https://github.com/pthom/imgui_bundle/blob/main/external/immapp/immapp/runner.h

|

from imgui_bundle import imgui, immapp

def gui():
 imgui.text("Hello, world!")
immapp.run(gui)

C++

#include "immapp/immapp.h"
#include "imgui.h"

void gui() { ImGui::Text("Hello, world!"); }
int main() { ImmApp::Run(gui); }

A more complete example with plots:

The example below shows how to create a more complete application that uses an

add-on (ImPlot) for plotting data.

Python

import time
import numpy as np

from imgui_bundle import implot, imgui, immapp, imgui_knobs

Fill x and y whose plot is a heart
vals = np.arange(0, np.pi * 2, 0.01)
x = np.power(np.sin(vals), 3) * 16
y = 13 * np.cos(vals) - 5 * np.cos(2 * vals) - 2 * np.cos(3 * vals) -
np.cos(4 * vals)
Heart pulse rate and time tracking
phase = 0.0
t0 = time.time() + 0.2
heart_pulse_rate = 80

def gui():
 global heart_pulse_rate, phase, t0, x, y

 # Change heart size over time, according to the pulse rate
 t = time.time()
 phase += (t - t0) * heart_pulse_rate / (np.pi * 2)
 k = 0.8 + 0.1 * np.cos(phase)
 t0 = t

 # Plot the heart
 if implot.begin_plot("Heart", immapp.em_to_vec2(21, 21)):
 implot.plot_line("", x * k, y * k)
 implot.end_plot()

January 21, 2026 6 of 76

|

 # let the user set the pulse rate via a knob
 _, heart_pulse_rate = imgui_knobs.knob("Pulse Rate",
heart_pulse_rate, 30.0, 180.0)

if __name__ == "__main__":
 immapp.run(gui,
 window_size_auto=True,
 window_title="Hello!",
 with_implot=True,
 fps_idle=0 # Make sure that the animation is smooth
(do not limit fps when idle)
)

C++

#include "imgui.h"
#include "implot/implot.h"
#include "imgui-knobs/imgui-knobs.h"
#include "immapp/immapp.h"
#include "hello_imgui/hello_imgui.h"

#include <cmath>

std::vector<double> VectorTimesK(const std::vector<double>& values,
double k)
{
 std::vector<double> r(values.size(), 0.);
 for (size_t i = 0; i < values.size(); ++i)
 r[i] = k * values[i];
 return r;
}

int main(int , char *[]) {
 // Fill x and y whose plot is a heart
 double pi = 3.1415926535;
 std::vector<double> x, y; {
 for (double t = 0.; t < pi * 2.; t += 0.01) {
 x.push_back(pow(sin(t), 3.) * 16.);
 y.push_back(13. * cos(t) - 5 * cos(2. * t) - 2 * cos(3. *
t) - cos(4. * t));
 }
 }
 // Heart pulse rate and time tracking
 double phase = 0., t0 = ImmApp::ClockSeconds() + 0.2;
 float heart_pulse_rate = 80.;

 auto gui = [&]() {
 // Change heart size over time, according to the pulse rate
 double t = ImmApp::ClockSeconds();

January 21, 2026 7 of 76

|

 phase += (t - t0) * (double)heart_pulse_rate / (pi * 2.);
 double k = 0.8 + 0.1 * cos(phase);
 t0 = t;
 auto xk = VectorTimesK(x, k), yk = VectorTimesK(y, k);

 // Plot the heart
 if (ImPlot::BeginPlot("Heart", ImmApp::EmToVec2(21, 21)))
 {
 ImPlot::PlotLine("", xk.data(), yk.data(),
(int)xk.size());
 ImPlot::EndPlot();
 }

 // let the user set the pulse rate via a knob
 ImGuiKnobs::Knob("Pulse", &heart_pulse_rate, 30., 180.);
 };

 ImmApp::AddOnsParams addOnsParams{.withImplot = true};
 HelloImGui::SimpleRunnerParams runnerParams {
 .guiFunction = gui,
 .windowTitle = "Hello!",
 .windowSizeAuto = true,
 .fpsIdle = 0.f // Make sure that the animation is smooth (do
not limit fps when idle)
 };
 ImmApp::Run(runnerParams, addOnsParams);
}

January 21, 2026 8 of 76

|

1.b.iv. Quickly deploy your apps on the web:

These apps can be easily deployed on the web, either in C++ via Emscripten, or in

Python via Pyodide.

• Online demo (C++/Emscripten): Heart Pulse Demo

• Online demo (Python/Pyodide): Heart Pulse Demo - Pyodide, and html + python

source code

January 21, 2026 9 of 76

https://traineq.org/ImGuiBundle/emscripten/bin/haiku_implot_heart.html
https://traineq.org/imgui_bundle_online/projects/min_bundle_pyodide_app/demo_heart.html
https://traineq.org/imgui_bundle_online/projects/min_bundle_pyodide_app/demo_heart.source.txt
https://traineq.org/imgui_bundle_online/projects/min_bundle_pyodide_app/demo_heart.source.txt

|

1.c. Interactive Manuals

1.c.i. Dear ImGui Manual:

Dear ImGui Manual lets you explore all the widgets and features of Dear ImGui, with

live examples and the corresponding python or C++ code. It is built using Dear ImGui

Bundle.

1.c.ii. Dear ImGui Bundle Interactive Manual:

Dear ImGui Bundle interactive manual lets you explore the features of Dear ImGui

Bundle in your web browser.

Pay attention to the “Demo Apps” tab, which contains many examples built with

Dear ImGui Bundle. You can read the documentation, run the demos, and even view

the source code (in C++ and Python) directly from the manual!

January 21, 2026 10 of 76

https://pthom.github.io/imgui_manual_online/manual/imgui_manual.html
https://traineq.org/ImGuiBundle/emscripten/bin/demo_imgui_bundle.html

|

1.c.iii. Online Python playground:

With this online playground, you can edit and run imgui apps in the browser,

without installing anything.

January 21, 2026 11 of 76

https://traineq.org/imgui_bundle_online/projects/imgui_bundle_playground/

|

1.d. Examples and Gallery

1.d.i. Examples in the interactive manual:

Below are simple example applications available in the Dear ImGui Bundle interactive

manual, in the “Demo Apps” tab.

Figure 1: Inside the manual, click the “Demo Apps” tab, select a demo, run it and look

at its source code.

https://traineq.org/ImGuiBundle/emscripten/bin/demo_imgui_bundle.html

Complex layouts with docking windows:

Figure 2: A complex GUI app with a docking layout, and several possible

arrangements

Run this demo in your browser

This demonstration showcases how to:

• set up a complex docking layouts (with several possible layouts)

• use the status bar

• use default menus (App and view menu), and how to customize them

• display a log window

• load additional fonts

• use a specific application state (instead of using static variables)

• save some additional user settings within imgui ini file

Its source code is heavily documented and should be self-explanatory.

January 21, 2026 12 of 76

https://traineq.org/ImGuiBundle/emscripten/bin/demo_imgui_bundle.html
https://traineq.org/ImGuiBundle/emscripten/bin/demo_imgui_bundle.html
https://traineq.org/ImGuiBundle/emscripten/bin/demo
https://traineq.org/ImGuiBundle/emscripten/bin/demo_docking.html

|

• C++ source code

• Python source code

Custom 3D Background:

Figure 3: A custom 3D scene rendered in the background of an ImGui application

Run this demo in your browser

This demonstration showcases how to:

• Display a 3D scene in the background via the callback

runnerParams.callbacks.CustomBackground

• Load and compile a shader

• Adjust uniforms in the GUI

Its source code is heavily documented and should be self-explanatory.

• C++ source code

• Python source code

Display & analyze images with ImmVision:

Figure 4: ImmVision in action

Figure 5: Zooming on the images (with the mouse wheel) to display pixel values

Run this demo in your browser

January 21, 2026 13 of 76

https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/demos_cpp/demos_immapp/demo_docking.cpp
https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/demos_python/demos_immapp/demo_docking.py
https://traineq.org/ImGuiBundle/emscripten/bin/demo_custom_background.html
https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/demos_cpp/demos_immapp/demo_custom_background.cpp
https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/demos_python/demos_immapp/demo_custom_background.py
https://traineq.org/ImGuiBundle/emscripten/bin/demo_immvision_process.html

|

ImmVision is an immediate image debugger which can display multiple kinds of

images (RGB, RGBA, float, etc.), zoom to examine precise pixel values, display float

images with a versatile colormap, etc.

This demonstration showcases how to:

• display two versions of an image, before after an image processing pipeline

• zoom on specific ROI of those images to see pixel values

• play with the parameter of the image processing pipeline

Its source code is heavily documented and should be self-explanatory.

• C++ source code

• Python source code

Test & Automation with ImGui Test Engine:

Run this demo in your browser

ImGui Test Engine is a Tests & Automation Engine for Dear ImGui.

This demo source code is heavily documented and should be self-explanatory. It

shows how to:

• enable ImGui Test Engine via RunnerParams.use_imgui_test_engine

• define a callback where the tests are registered

(runner_params.callbacks.register_tests)

• create tests, and:

‣ automate actions using “named references” (see Named References)

‣ display an optional custom GUI for a test

• manipulate custom variables

• check that simulated actions do modify those variables

Note

See Dear ImGui Test Engine License. (TL;DR: free for individuals, educational,

open-source and small businesses uses. Paid for larger businesses)

• C++ source code

January 21, 2026 14 of 76

https://github.com/pthom/immvision
https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/demos_cpp/demos_immvision/demo_immvision_process.cpp
https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/demos_python/demos_immvision/demo_immvision_process.py
https://traineq.org/ImGuiBundle/emscripten/bin/demo_testengine.html
https://github.com/ocornut/imgui_test_engine
https://github.com/ocornut/imgui_test_engine/wiki/Named-References
https://github.com/ocornut/imgui_test_engine/blob/main/imgui_test_engine/LICENSE.txt
https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/demos_cpp/demos_immapp/demo_testengine.cpp

|

• Python source code

1.d.ii. Example Applications Gallery:

More examples in the Gallery. Add yours!

4K4D:

A research project aimed for CVPR 2024, using python bindings (ImGui Bundle).

@inproceedings{xu20244k4d,
 title={4K4D: Real-Time 4D View Synthesis at 4K Resolution},
 author={Xu, Zhen and Peng, Sida and Lin, Haotong and He, Guangzhao and
Sun, Jiaming and Shen, Yujun and Bao, Hujun and Zhou, Xiaowei},
 booktitle={CVPR},
 year={2024}
}

4K4D: Real-Time 4D View Synthesis at 4K Resolution

Figure 7: A volumetric video, showing an ImGui interface to control the rendering

parameters.

HDRview:

HDRview is a research-oriented image viewer with an emphasis on examining and

comparing high-dynamic range (HDR) images.

It is developed by Wojciech Jarosz and is built using Hello ImGui (which is included

in Dear ImGui Bundle), in C++. It runs on Windows, Linux, macOS, iOS, and on the

web via emscripten!

January 21, 2026 15 of 76

https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/demos_python/demos_immapp/demo_testengine.py
https://github.com/pthom/imgui_bundle/discussions/107
https://zju3dv.github.io/4k4d/
https://github.com/wkjarosz/hdrview

|

Figure 8: HDRview running on an iPad as a webapp, viewing a luminance-chroma

EXR image stored using XYZ primaries with chroma subsampling.

Access HDRview online: https://wkjarosz.github.io/hdrview/

January 21, 2026 16 of 76

https://wkjarosz.github.io/hdrview/

|

1.e. Resources

1.e.i. Interactive demos & manuals:

The manuals and demos below are using Dear ImGui Bundle itself!

• ImGui Bundle interactive manual: lots of example apps which you can run and

inspect the source code

• ImGui Manual (widget reference & code): explore all the widgets and features of

Dear ImGui, with live examples and the corresponding python or C++ code

• Online Pyodide playground: try imgui apps using Python, directly in your

browser

1.e.ii. Documentation websites:

• Hello ImGui documentation. Hello ImGui provides a simple framework to

quickly create applications using Dear ImGui. It is included in Dear ImGui

Bundle.

• Dear ImGui Bundle documentation.

• Fiatlight documentation. FiatLight provides automatic UI generation for

functions and structured data (dataclasses, pydantic models), making it a

powerful tool for rapid prototyping and application development. It is build on

top of Dear ImGui Bundle.

1.e.iii. YouTube Playlist:

A series of video tutorials about Dear ImGui Bundle, Hello ImGui and Fiatlight:

• Dear ImGui Bundle - YouTube Playlist

1.e.iv. DeepWiki:

Ask DeepWikiAsk DeepWiki

DeepWiki is an AI based website where you can ask questions about the usage of

Dear ImGui Bundle and get answers. It is trained on the full documentation and the

source code of the Dear ImGui Bundle. Expect some inconsistencies, but it is still

helpful.

1.e.v. Repositories:

• Dear ImGui official repository

• Dear ImGui Bundle repository

• Hello ImGui repository

• Litgen (bindings generator) repository

• Fiatlight repository

January 21, 2026 17 of 76

https://traineq.org/ImGuiBundle/emscripten/bin/demo_imgui_bundle.html
https://pthom.github.io/imgui_manual_online/manual/imgui_manual.html
https://traineq.org/imgui_bundle_online/projects/imgui_bundle_playground/
https://pthom.github.io/hello_imgui
https://pthom.github.io/imgui_bundle
https://pthom.github.io/fiatlight_doc
https://www.youtube.com/playlist?list=PLaJx_KrDECZPzttQ77Gv8DD7OAUwmtWUc
https://deepwiki.com/pthom/imgui_bundle
https://github.com/ocornut/imgui
https://github.com/pthom/imgui_bundle
https://github.com/pthom/hello_imgui
https://github.com/pthom/litgen
https://github.com/pthom/fiatlight

|

1.e.vi. Full PDF manuals for LLMs:

You may feed the manuals below to a LLM, so that it can help you when using the

libraries.

• Hello ImGui manual (full pdf)

• ImGui Bundle manual (full pdf)

• Fiatlight manual (full pdf)

January 21, 2026 18 of 76

https://raw.githubusercontent.com/pthom/imgui_related_docs/refs/heads/main/manuals/hello_imgui_manual.pdf
https://pthom.github.io/imgui_bundle/assets/book.pdf
https://pthom.github.io/fiatlight_doc/flgt.pdf

|

2. For Python users

2.a. Introduction

2.a.i. Immediate GUI in Python with Dear ImGui Bundle:

The most popular Immediate Mode GUI library is Dear ImGui, a powerful C++

library originally created for real-time tools in game engines, now widely used in

many industries, with over 60k stars on GitHub.

For Python, Dear ImGui Bundle brings full Dear ImGui support plus many extra

libraries, making it ideal for rapid prototyping as well as building complex apps with

advanced widgets, plotting, node editors, and more.

The python bindings are heavily documented so that they are easy to browse. They

are also autogenerated, so that they are always up-to-date.

2.a.ii. Anatomy of an application with Dear ImGui Bundle:

imgui_bundle is a Python package that unifies multiple Dear ImGui-related

submodules:

• imgui: the core Dear ImGui library

• implot and implot3d: for advanced, real-time plotting

• imgui_md: markdown rendering for imgui

• hello_imgui: an approachable starter kit for new apps

January 21, 2026 19 of 76

https://github.com/ocornut/imgui
https://github.com/pthom/imgui_bundle

|

• immapp: helper to activate “addons” (like implot, markdown, etc.)

• Plus about 20 other powerful tools

The example below is heavily commented and shows how to create a simple app that

combines Markdown text and an animated plot using implot:

import numpy as np
from imgui_bundle import imgui, implot, imgui_md, hello_imgui, immapp

def gui():
 # Render Markdown text
 imgui_md.render_unindented("""
 # Render an animated plot with ImPlot
 This example uses `ImPlot` for real-time plotting, and `imgui_md`
for markdown.
 """)

 # Render an animated plot (updates every frame)
 if implot.begin_plot(
 title_id="Plot",
 # size in em units (1em = height of a character)
 size=hello_imgui.em_to_vec2(40, 20)):
 x = np.arange(0, np.pi * 4, 0.01)
 y = np.cos(x + imgui.get_time())
 implot.plot_line("y1", x, y)
 implot.end_plot()

 if imgui.button("Exit"):
 hello_imgui.get_runner_params().app_shall_exit = True

Run the app with ImPlot and markdown support
immapp.run(gui,
 with_implot=True,
 with_markdown=True,
 window_size=(700, 500))

January 21, 2026 20 of 76

|

2.a.iii. Deploy your applications:

Dear ImGui Bundle apps are highly portable—they can run as standalone Python

scripts, in Jupyter notebooks, or even directly in web browsers via Pyodide.

• Standalone scripts: Run on any PC (Windows, macOS, Linux) with minimal

setup.

• Jupyter notebooks: The app runs in a separate window, and a screenshot is

displayed in the notebook after closing (requires running Jupyter locally).

• Web (Pyodide): No server or installation required—just a static HTML file. Your

Python app runs in the browser, with the package downloaded from a CDN.

January 21, 2026 21 of 76

|

January 21, 2026 22 of 76

|

2.b. Install for Python

2.b.i. Install from pypi:

Minimal install
pip install imgui-bundle

or to get all optional features:
pip install "imgui-bundle[full]"

Binary wheels are available for Windows, macOS and Linux. If a compilation from

source is needed, the build process might take up to 5 minutes, and will require an

internet connection.

Platform notes

• Windows: Under windows, you might need to install the msvc redist

• macOS : under macOS, if a binary wheel is not available (e.g. for older macOS

versions), pip will try to compile from source. This might fail if you do not have

XCode installed. In this case, install imgui-bundle with the following command

SYSTEM_VERSION_COMPAT=0 pip install --only-binary=:all: imgui_bundle

2.b.ii. Install from source:

Clone the repository
git clone https://github.com/pthom/imgui_bundle.git
cd imgui_bundle

Build and install the package (minimal install)
pip install -v .

or build and install the package with all optional features:
pip install -v ".[full]"

The build process might take up to 5 minutes, and will clone the submodules if

needed (an internet connection is required).

2.b.iii. Run the python demo:

Simply run imgui_bundle_demo.

The source for the demos can be found inside bindings/imgui_bundle/demos_python.

TIP: Consider imgui_bundle_demo as an always available manual for Dear ImGui

Bundle with lots of examples and related code source.

January 21, 2026 23 of 76

https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170\#visual-studio-2015-2017-2019-and-2022
https://github.com/pthom/imgui_bundle/tree/main/bindings/imgui_bundle/demos_python

|

2.c. Tips

2.c.i. Context Managers:

In Python, the module imgui_ctx provides a lot of context managers that

automatically call imgui.end(), imgui.end_child(), etc., when the context is exited, so

that you can write:

from imgui_bundle import imgui, imgui_ctx

with imgui_ctx.begin("My Window"): # imgui.end() called automatically
imgui.text("Hello World")

Of course, you can choose to use the standard API by using the module imgui:

imgui.begin("My Window")
imgui.text("Hello World")
imgui.end()

• See imgui_ctx

• See demo_python_context_manager.py

2.c.ii. Advanced glfw callbacks:

When using the glfw backend, you can set advanced callbacks on all glfw events.

Below is an example that triggers a callback whenever the window size is changed:

from imgui_bundle import glfw_utils, hello_imgui, imgui
import glfw # if you import glfw, do it _after_ imgui_bundle

define a callback
def my_window_size_callback(window: glfw._GLFWwindow, w: int, h: int):
 print(f"Window size changed to {w}x{h}")

def install_glfw_callbacks():
 # Get the glfw window used by hello imgui
 glfw_win = glfw_utils.glfw_window_hello_imgui()
 glfw_utils.glfw.set_window_size_callback(glfw_win,
my_window_size_callback)

Install the callback once everything is initialized, for example:
runner_params = hello_imgui.RunnerParams()
...
runner_params.callbacks.post_init = install_glfw_callbacks

Caution

It is important to import glfw after imgui_bundle, since - upon import -

imgui_bundle informs glfw that it shall use its own version of the glfw dynamic

library.

January 21, 2026 24 of 76

https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/imgui_ctx.py
https://github.com/pthom/imgui_bundle/tree/main/bindings/imgui_bundle/demos_python/demos_immapp/demo_python_context_manager.py

|

2.c.iii. Display Matplotlib plots in ImGui:

imgui_fig.py is a small utility to display Matplotlib plots in ImGui.

See demo_matplotlib.py for an example.

2.c.iv. Read the libraries doc as a Python developer:

General advices:

ImGui is a C++ library that was ported to Python. In order to work with it, you will

often refer to its manual, which shows example code in C++.

In order to translate from C++ to Python:

1. Change the function names and parameters’ names from CamelCase to

snake_case

2. Change the way the output are handled.

a. in C++ ImGui::RadioButton modifies its second parameter (which is passed by

address) and returns true if the user clicked the radio button.

b. In python, the (possibly modified) value is transmitted via the return:

imgui.radio_button returns a Tuple[bool, str] which contains (user_clicked,

new_value).

1. if porting some code that uses static variables, use the @immapp.static

decorator. In this case, this decorator simply adds a variable value at the

function scope. It is preserved between calls. Normally, this variable should be

accessed via demo_radio_button.value, however the first line of the function

adds a synonym named static for more clarity. Do not overuse them! Static

variable suffer from almost the same shortcomings as global variables, so you

should prefer to modify an application state.

Example

C++

void DemoRadioButton()
{
 static int value = 0;
 ImGui::RadioButton("radio a", &value, 0); ImGui::SameLine();
 ImGui::RadioButton("radio b", &value, 1); ImGui::SameLine();
 ImGui::RadioButton("radio c", &value, 2);
}

Python

@immapp.static(value=0)
def demo_radio_button():
 static = demo_radio_button
 clicked, static.value = imgui.radio_button("radio a", static.value,
0)

January 21, 2026 25 of 76

https://github.com/pthom/imgui_bundle/tree/main/bindings/imgui_bundle/imgui_fig.py
https://github.com/pthom/imgui_bundle/tree/main/bindings/imgui_bundle/demos_python/demos_immapp/demo_matplotlib.py

|

 imgui.same_line()
 clicked, static.value = imgui.radio_button("radio b", static.value,
1)
 imgui.same_line()
 clicked, static.value = imgui.radio_button("radio c", static.value,
2)

Enums and TextInput:

In the example below, two differences are important:

InputText functions:

imgui.input_text (Python) is equivalent to ImGui::InputText (C++)

• In C++, it uses two parameters for the text: the text pointer, and its length.

• In Python, you can simply pass a string, and get back its modified value in the

returned tuple.

Enums handling:

• ImGuiInputTextFlags_ (C++) corresponds to imgui.InputTextFlags_ (python)

and it is an enum (note the trailing underscore).

• ImGuiInputTextFlags (C++) corresponds to imgui.InputTextFlags (python)

and it is an int (note: no trailing underscore)

You will find many similar enums.

The dichotomy between int and enums, enables you to write flags that are a

combinations of values from the enum (see example below).

Example

C++

void DemoInputTextUpperCase()
{
 static char text[64] = "";
 ImGuiInputTextFlags flags = (
 ImGuiInputTextFlags_CharsUppercase
 | ImGuiInputTextFlags_CharsNoBlank
);
 /*bool changed = */ ImGui::InputText("Upper case, no spaces", text,
64, flags);
}

Python

@immapp.static(text="")
def demo_input_text_decimal() -> None:
 static = demo_input_text_decimal
 flags:imgui.InputTextFlags = (
 imgui.InputTextFlags_.chars_uppercase.value

January 21, 2026 26 of 76

|

 | imgui.InputTextFlags_.chars_no_blank.value
)
 changed, static.text = imgui.input_text("Upper case, no spaces",
static.text, flags)

Dear ImGui C++ vs Python API:

Dear ImGui’s C++ API is thoroughly documented in its header files:

• main API

• internal API

The Dear ImGui Python API The python API closely mirrors the C++ API, and its

documentation is extremely easy to access from your IDE, via thoroughly

documented stub (*.pyi) files.

• main API

• internal API

January 21, 2026 27 of 76

https://github.com/ocornut/imgui/blob/master/imgui.h
https://github.com/ocornut/imgui/blob/master/imgui_internal.h
https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/imgui/__init__.pyi
https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/imgui/internal.pyi

|

2.d. Assets folder

(for python)

hello_imgui and immapp applications rely on the presence of an assets/ folder.

This folder stores:

• Default fonts used by the markdown renderer (if the markdown addon is used).

• All the resources (images, fonts, etc.) used by the application. Feel free to add

any resources there!

Assets folder location

Place the assets folder in the same folder as the script.

If needed, change the assets folder location:

Call hello_imgui.set_assets_folder() at startup.

Typical layout of the assets folder

assets/
 +-- fonts/
 | +-- DroidSans.ttf # Default fonts used by HelloImGui
to
 | +-- fontawesome-webfont.ttf # improve text rendering (esp. on
High DPI)
 | | # if absent, a default LowRes font
is used.
 | |
 | +-- Roboto/ # Optional: fonts for markdown
 | +-- LICENSE.txt
 | +-- Roboto-Bold.ttf
 | +-- Roboto-BoldItalic.ttf
 | +-- Roboto-Regular.ttf
 | +-- Roboto-RegularItalic.ttf
 | +-- Inconsolata-Medium.ttf
 +-- images/
 +-- markdown_broken_image.png # Optional: used for markdown
 +-- world.png # Add anything in the assets
folder!

Note: in C++, the assets folder also contains an app_settings folder, which contains

application settings and app icons for different platforms. This is not needed / not

available in Python applications.

Where to find the default assets

You can download the default assets as a zip file.

Look at the folder imgui_bundle/bindings/imgui_bundle/assets to see its content.

January 21, 2026 28 of 76

https://traineq.org/ImGuiBundle/assets.zip
https://github.com/pthom/imgui_bundle/tree/main/bindings/imgui_bundle/assets

|

2.e. Pure Python Backends

HelloImGui and ImmApp use glfw as a default backend. If you wish to use a different

backend, it is possible to use sdl2 or pyglet, via pure python backends.

python_backends contains pure python backends for glfw, pyglet, sdl2 and sdl3. They

do not offer the same DPI handling as HelloImGui, but they are a good starting point

if you want to use alternative backends.

See examples for more information.

January 21, 2026 29 of 76

https://github.com/pthom/imgui_bundle/tree/main/bindings/imgui_bundle/python_backends
https://github.com/pthom/imgui_bundle/tree/main/bindings/imgui_bundle/python_backends/examples

|

2.f. Async Support

ImGui Bundle provides async/await support that enables true parallel execution of

Python code alongside GUI rendering. This allows your Python computations to run

at full speed while the GUI remains responsive.

Note: an async execution mode is also available for Jupyter notebooks; see Notebook

Usage for details.

2.f.i. Overview:

immapp.run_async() and hello_imgui.run_async() function allows you to run

ImGui applications asynchronously using Python’s asyncio framework. This is

particularly useful when:

• You need to perform computations while the GUI is running

• You’re building data visualization dashboards with live updates

• You want to integrate ImGui into async Python applications

• You’re working in Jupyter notebooks (see Notebook Usage)

2.f.ii. Quick Example:

Here’s a simple example showing parallel execution:

import asyncio
import time
from imgui_bundle import immapp, imgui, hello_imgui, imgui_md

GUI_FINISHED = False
COMPUTATION_COUNT = 0
START_TIME = time.time()

def gui():
 params = hello_imgui.get_runner_params()
 idling_params = params.fps_idling
 idling_params.fps_idling_mode =
hello_imgui.FpsIdlingMode.early_return
 idling_params.vsync_to_monitor = False
 idling_params.fps_max = 60.0

 imgui.text(f"GUI FPS: {hello_imgui.frame_rate():.1f}")
 imgui.text(f"Computations per second: {COMPUTATION_COUNT /
(time.time() - START_TIME):.1f}")
 global GUI_FINISHED
 GUI_FINISHED = hello_imgui.get_runner_params().app_shall_exit

async def python_computation_loop():
 """Run computations while GUI is active."""
 """Python code which runs in parallel with the GUI!"""
 global COMPUTATION_COUNT

January 21, 2026 30 of 76

notebooks.md
notebooks.md
notebooks.md

|

 while not GUI_FINISHED:
 _ = sum(range(1000)) # Do some work
 COMPUTATION_COUNT += 1
 await asyncio.sleep(0) # Yield to event loop (required for async
cooperation)

async def main():
 # Start GUI as an asyncio task (non-blocking)
 _gui_task = asyncio.create_task(immapp.run_async(gui,
window_size_auto=True))
 # Run computations in parallel
 await python_computation_loop()

if __name__ == "__main__":
 asyncio.run(main())

Also see demos_immapp/demo_run_async.py

2.f.iii. Automatic FPS Optimization:

immapp.run_async automatically adjusts FPS idling parameters to optimize

performance, so that the Python loop can run at maximum speed.

The settings below are applied automatically by immapp.run_async to ensure that the

GUI rendering returns early to Python instead of sleeping, allowing maximum

parallelism between GUI rendering and Python code execution:

 runner_params.fps_idling.fps_idling_mode =
hello_imgui.FpsIdlingMode.early_return
 runner_params.fps_idling.vsync_to_monitor = False
 runner_params.fps_idling.fps_max = 60.0

2.f.iv. Signature Patterns:

run_async() supports two different ways to configure your application:

1. Simple GUI Function:

async def gui():
 imgui.text("Hello, World!")
 if imgui.button("Click me"):
 print("Button clicked!")

await immapp.run_async(
 gui,
 window_title="My App",
 window_size_auto=True,
 top_most=True,
 # Optional addons (immapp only)
 with_implot=True,

January 21, 2026 31 of 76

https://github.com/pthom/imgui_bundle/blob/main/bindings/imgui_bundle/demos_python/demos_immapp/demo_run_async.py

|

 with_markdown=True
)

2. Full RunnerParams (Maximum Control):

from imgui_bundle import hello_imgui, immapp

runner_params = hello_imgui.RunnerParams()
runner_params.callbacks.show_gui = gui
runner_params.app_window_params.window_title = "My App"
runner_params.imgui_window_params.show_menu_bar = True

With immapp, you can use AddOnsParams
addons = immapp.AddOnsParams()
addons.with_implot = True
addons.with_node_editor = True

asyncio.run(immapp.run_async(runner_params, addons))

2.f.v. Yielding to the Event Loop:

In your async code, you must regularly yield control to the event loop to allow the

GUI to render:

async def my_computation():
 while condition:
 # Do some work
 result = expensive_computation()

 # Yield to allow GUI rendering (critical!)
 await asyncio.sleep(0)

Without await asyncio.sleep(0), the GUI will freeze because asyncio can’t switch

between tasks.

2.f.vi. Troubleshooting:

GUI Freezes:

Problem: The GUI becomes unresponsive during computations. Solution: Make sure

to await asyncio.sleep(0) regularly in your computation loops.

Exceptions in the async GUI:

If your GUI raises an exception, it might be difficult to trace with the GUI is running

in an async way.

In that case, it is recommended to first test your GUI in blocking mode using

immapp.run, which will propagate exceptions normally. Once your GUI works in

blocking mode, you can then switch to non-blocking mode (immapp.run_async).

January 21, 2026 32 of 76

|

2.g. Jupyter Notebook support

2.g.i. Introduction:

The notebook submodules (immapp.nb and hello_imgui.nb) provide convenient

functions for the usage in a local jupyter notebook, with two main modes:

• blocking mode: other cells cannot be run in parallel. A screenshot is displayed

after the application exits.

• non-blocking mode: other cells can be run in parallel. The application window

updates live.

Note

Note: Working on a remote notebook (or via Google Collab) may not work, since it

requires a local X11 server (it might work if using X11 formwarding).

2.g.ii. Blocking mode:

API:

immapp.nb.run and hello_imgui.nb.run functions will run a GUI application, wait

for it to exit, and display a screenshot of the final application screen in the cell

output.

During the application execution, other cells cannot be run.

Parameters

immapp.nb.run and hello_imgui.nb.run accept the same parameters as immapp.run

and hello_imgui.run, respectively.

Optional additional parameters to controls the screenshot size (choose only one of

the two):

• thumbnail_ratio: (default=1.0) You can use it to change the size of the thumbnail.

Passing 0.5 will create a thumbnail half the width of the window.

• thumbnail_height: (default=0) You can use it to set a fixed height for the

thumbnail (in pixels). If 0, the height is computed from the app window size.

Example:

The example cell below demonstrates the blocking mode using immapp.nb.run. It

shows a sinusoidal curve that can be adjusted with a slider. After closing the

application window, a screenshot of the final state is displayed in the cell output.

from imgui_bundle import implot, immapp, imgui
import numpy as np

FREQ = 0.1

def gui():

January 21, 2026 33 of 76

|

 global FREQ
 _, FREQ = imgui.slider_float("Frequency", FREQ, 0.01, 1.0)
 x = np.arange(0, 100, 0.1)
 y = np.sin(FREQ * x)
 if implot.begin_plot("My plot"):
 implot.plot_line("Sine wave", y)
 implot.end_plot()

immapp.nb.run(gui, window_size=(600, 350), with_implot=True,
thumbnail_height=500)

2.g.iii. Non blocking mode:

API:

start:

• immapp.nb.start and hello_imgui.nb.start will run a GUI application,

display it in a top-most window on top of the browser.

Other cells can be run while the application is running. The application

window will update live.

Note: these function return an asyncio.Task, which may be awaited or managed using

asyncio.

Parameters

immapp.nb.start and hello_imgui.nb.start accept the same parameters as

immapp.start and hello_imgui.start, respectively.

Optional additional parameter: top_most to control if the application window should

stay on top of other windows.

is_running:

January 21, 2026 34 of 76

|

• immapp.nb.is_running and hello_imgui.nb.is_running return True if the

application is running, False otherwise.

stop:

• immapp.nb.stop and hello_imgui.nb.stop will stop the running application.

Tip

Only one application can be run at a time from a notebook. Trying to start a new

application while another one is running will exit the previous one.

Note: If other cells are running while the application is running, they should call await

asyncio.sleep(0) periodically to allow the application to update.

Important

If your GUI raises an exception, it might be difficult to trace with the GUI is

running in an async way.

In that case, it is recommended to first test your GUI in blocking mode using

immapp.nb.run, which will propagate exceptions normally. Once your GUI works

in blocking mode, you can then switch to non-blocking mode (immapp.nb.start).

Example:

Start the application:

The cell below demonstrates the non-blocking mode using immapp.nb.start. It runs

the same application as before (a sinusoidal curve that can be adjusted with a slider).

You can modify the frequency while the application is running by changing the value

of the FREQ variable in another cell.

When you run it, the cell exits immediately, but the GUI application continues to

show and to be interactive (you can then run other cells while the application is

running).

Note: since, immapp.nb.start returns an asyncio.Task, you can see that the cell output

shows the task information (Task pending, …).

Important

In a non-blocking mode, the GUI will not be shown inside the notebook (not even

as a screenshot). Instead, it will be displayed in a separate top-most window on

top of the browser.

Refer to the “video demonstration” below for a demo of how the cells below will

render on your screen.

immapp.nb.start(gui, window_size=(500, 300), with_implot=True,
top_most=True)

January 21, 2026 35 of 76

|

<Task pending name='Task-35' coro=<run_async() running at /Users/pascal/
dvp/OpenSource/ImGuiWork/_Bundle/imgui_bundle/bindings/imgui_bundle/
immapp/run_async_overloads.py:63>>

Interact while the application is running:

The cell below shows that it is possible to modify the frequency via code while the

application is running, and the curve updates live.

FREQ = 0.5 # Modify frequency while the app is running

Check if the application is running:

The cells below can be used to check if the application is running

immapp.nb.is_running()

True

Stop the application:

immapp.nb.stop()

Video demonstration:

Figure 9: Demonstration of the non-blocking mode in a Jupyter notebook.

2.g.iv. Example: Real-Time Data Stream Simulation:

This example simulates a live data stream that continuously updates, like you might

see in a monitoring dashboard or during ML training.

January 21, 2026 36 of 76

|

Tip

Refer to the “video demonstration” below for a demo of how the cells below will

render on your screen.

Start the GUI:

The cell below instantiate the application data (stream_data) and starts a GUI

application that displays the live data stream.

from imgui_bundle import immapp, imgui, hello_imgui, implot
import numpy as np
import time

Streaming data buffer
stream_data = {
 "values": [],
 "max_points": 500,
 "paused": False
}

def streaming_gui():
 """GUI that shows a live streaming plot"""
 imgui.text("Live Data Stream")
 imgui.text(f"Points: {len(stream_data['values'])}")

 # Control buttons
 if imgui.button("Pause" if not stream_data["paused"] else "Resume"):
 stream_data["paused"] = not stream_data["paused"]

 imgui.same_line()
 if imgui.button("Clear"):
 stream_data["values"].clear()

 imgui.separator()

 # Plot the streaming data
 if len(stream_data["values"]) > 0:
 if implot.begin_plot("Data Stream", hello_imgui.em_to_vec2(40,
15)):
 x_data = np.arange(len(stream_data["values"]),
dtype=np.float32)
 y_data = np.array(stream_data["values"], dtype=np.float32)
 implot.setup_axes("x", "y", implot.AxisFlags_.auto_fit,
implot.AxisFlags_.auto_fit)
 implot.plot_line("Value", x_data, y_data)
 implot.end_plot()

 if imgui.button("Close"):
 hello_imgui.get_runner_params().app_shall_exit = True

Start streaming GUI (note: immapp.nb.start is non-blocking

January 21, 2026 37 of 76

|

and immediately returns an asyncio task)
immapp.nb.start(
 streaming_gui,
 window_title="Data Stream Demo",
 window_size=(800, 400),
 with_implot=True,
 top_most=True
)

print("✓ Streaming GUI started!")
print("✓ Run the next cell to start the data stream.")

✓ Streaming GUI started!
✓ Run the next cell to start the data stream.

Simulate Data Stream:

The cell below simulates a data stream: this will add data points while the GUI

displays them in real-time.

• The GUI is already running above (in an asyncio task)

• So, we define another asyncio task to add data points (stream_data_loop below),

and we run it in async way.

This cell will run for 5 seconds: while it runs, you should see the GUI updating live

with new data points.

Important

It is important to call periodically await asyncio.sleep(...) in the loop, to

yield control to the event loop, so that the GUI can update. You may sleep for 0

seconds if you want to yield control with the shortest possible delay. (in the

example below, we sleep for 0.001 seconds to simulate a 100 Hz data stream).

import time
import random
import asyncio

async def stream_data_loop():
 print("Starting data stream... (will run for 10 seconds)")
 start_time = time.time()

 while time.time() - start_time < 5 and immapp.nb.is_running():
 if not stream_data["paused"]:
 # Add new data point
 new_value = np.sin(time.time()) + random.gauss(0, 0.1)
 stream_data["values"].append(new_value)

 # Keep buffer size limited
 if len(stream_data["values"]) > stream_data["max_points"]:

January 21, 2026 38 of 76

|

 stream_data["values"].pop(0)

 await asyncio.sleep(0.01) # Yield control to the event loop

 print(f"✓ Stream finished. Final count: {len(stream_data['values'])}
points")

Run the streaming loop
await stream_data_loop()

Starting data stream... (will run for 10 seconds)
✓ Stream finished. Final count: 492 points

Video demonstration:

Figure 10: Demonstration of the real-time data stream simulation in a Jupyter

notebook.

2.g.v. Example: Real-Time AI Training and tuning:

Video demonstration on youtube

Figure 11: Real-Time AI Training and tuning with Dear ImGui Bundle in Jupyter

Notebooks

Links to notebooks

• notebook_ml_training_async.ipynb

• notebook_ml_training_threaded.ipynb

January 21, 2026 39 of 76

https://github.com/pthom/imgui_bundle/blob/main/docs/book/python/notebook_ml_training_async.ipynb
https://github.com/pthom/imgui_bundle/blob/main/docs/book/python/notebook_ml_training_threaded.ipynb

|

2.h. Deploy to the web with Pyodide

Dear ImGui Bundle applications can be effortlessly deployed to the web using

Pyodide, enabling Python code to run directly in web browsers. This capability allows

developers to share interactive GUI applications without requiring users to install any

software.

Note: Pyodide cannot use large native packages (like TensorFlow or PyTorch),

and initial loading can be slow.

=== Pyodide Minimal Example

With Pyodide, web deployment is as easy as copying this HTML template. The

Python code is unchanged from what you’d use for desktop.

<!doctype html>
<html>
<head>
 <style>
 html, body { width: 100%; height: 100%; margin: 0; }
 #canvas { display: block; width: 100%; height: 100%;}
 </style>
 <script src="https://cdn.jsdelivr.net/pyodide/v0.28.2/full/pyodide.
js"></script>
</head>
<body>
<canvas id="canvas" tabindex="0"></canvas>
<script type="text/javascript">
 // ====================== Start of Python code
============================
 // Write your python code here
 pythonCode = `
from imgui_bundle import imgui, immapp

def gui():
 imgui.text(f"hello, world")

immapp.run(gui)
`
 // ====================== End of Python code
==============================
 async function main(){
 // This enables to use right click in the canvas
 document.addEventListener('contextmenu', event =>
event.preventDefault());
 // Load Pyodide
 let pyodide = await loadPyodide();
 // Setup SDL, cf https://pyodide.org/en/stable/usage/sdl.html
 let sdl2Canvas = document.getElementById("canvas");
 pyodide.canvas.setCanvas2D(sdl2Canvas);
 pyodide._api._skip_unwind_fatal_error = true; // SDL requires to

January 21, 2026 40 of 76

|

enable an opt-in flag :
 // Load imgui_bundle
 await pyodide.loadPackage("imgui_bundle");
 // Run the Python code
 pyodide.runPython(pythonCode);
 }
 main();
</script>
</body>
</html>

2.h.i. A more advanced example:

• animated heart,

• source code

2.h.ii. Online Python playground:

With this online playground, you can edit and run imgui apps in the browser,

without installing anything.

January 21, 2026 41 of 76

https://traineq.org/imgui_bundle_online/projects/min_bundle_pyodide_app/demo_heart.html
https://traineq.org/imgui_bundle_online/projects/min_bundle_pyodide_app/demo_heart.source.txt
https://traineq.org/imgui_bundle_online/projects/imgui_bundle_playground/

|

Figure 13: A browser window showing the playground: to the right an interactive

demo of the butterfly effect using a 3D plot, and to the left the python code that

creates it.

January 21, 2026 42 of 76

|

3. For C++ users

3.a. C++ Installation

3.a.i. Integrate Dear ImGui Bundle in your own project in 5 minutes:

The easiest way to use Dear ImGui Bundle in an external project is to use the

template available at https://github.com/pthom/imgui_bundle_template.

This template includes everything you need to set up your own project.

3.a.ii. Build from source:

If you choose to clone this repo, follow these instructions:

git clone https://github.com/pthom/imgui_bundle.git
cd imgui_bundle
git submodule update --init --recursive # (1)
mkdir build
cd build
cmake .. -DIMMVISION_FETCH_OPENCV=ON # (2)
make -j

(1) Since there are lots of submodules, this might take a few minutes

(2) The flag -DIMMVISION_FETCH_OPENCV=ON is optional. If set, a minimal

version of OpenCV will be downloaded a compiled at this stage (this might require a

few minutes)

The immvision module will only be built if OpenCV can be found. Otherwise, it will

be ignored, and no error will be emitted.

If you have an existing OpenCV install, set its path via:

cmake .. -DOpenCV_DIR=/.../path/to/OpenCVConfig.cmake

Tip

There are lots of CMake options to customize the build. See CMakeLists.txt

3.a.iii. Run the C++ demo:

If you built ImGuiBundle from source, Simply run build/bin/demo_imgui_bundle.

The source for the demos can be found inside bindings/imgui_bundle/demos_cpp.

Tip

Consider demo_imgui_bundle as a manual with lots of examples and related code

source. It is always available online

January 21, 2026 43 of 76

https://github.com/pthom/imgui
https://github.com/pthom/imgui_bundle_template
https://github.com/pthom/imgui_bundle/blob/main/CMakeLists.txt

|

3.b. Assets folder

(for C++)

HelloImGui and ImmApp applications rely on the presence of an assets/ folder.

This folder stores:

• Default fonts used by the markdown renderer (if the markdown addon is used).

• All the resources (images, fonts, etc.) used by the application. Feel free to add

any resources there!

Assets folder location

The assets folder should be placed in the same folder as the CMakeLists.txt for the

application (the one calling imgui_bundle_add_app)

Typical layout of the assets folder

assets/
 +-- app_settings/ # Application settings
 | +-- icon.png # This will be the app icon, it
should be square
 | | # and at least 256x256. It will be
converted
 | | # to the right format, for each
platform (except Android)
 | +-- apple/
 | | +-- Info.plist # macOS and iOS app settings
 | | # (or Info.ios.plist +
Info.macos.plist)
 | |
 | +-- android/ # Android app settings: files here
will be deployed
 | | |-- AndroidManifest.xml # Optional manifest
 | | +-- res/
 | | +-- mipmap-xxxhdpi/ # Optional icons for different
resolutions
 | | +-- ... # Use Android Studio to generate
them:
 | | # right click on res/ => New >
Image Asset
 | +-- emscripten/
 | |-- shell.emscripten.html # Emscripten shell file
 | | # (this file will be cmake
"configured"
 | | # to add the name and favicon)
 | +-- custom.js # Any custom file here will be
deployed
 | # in the emscripten build folder

 +-- fonts/
 | +-- DroidSans.ttf # Default fonts used by HelloImGui

January 21, 2026 44 of 76

|

to
 | +-- fontawesome-webfont.ttf # improve text rendering (esp. on
High DPI)
 | | # if absent, a default LowRes font
is used.
 | |
 | +-- Roboto/ # Optional: fonts for markdown
 | +-- LICENSE.txt
 | +-- Roboto-Bold.ttf
 | +-- Roboto-BoldItalic.ttf
 | +-- Roboto-Regular.ttf
 | +-- Roboto-RegularItalic.ttf
 | +-- Inconsolata-Medium.ttf
 +-- images/
 +-- markdown_broken_image.png # Optional: used for markdown
 +-- world.png # Add anything in the assets
folder!

If needed, change the assets folder location:

Call HelloImGui::SetAssetsFolder() at startup. Or specify its location in CMake

via imgui_bundle_add_app(app_name file.cpp ASSETS_LOCATION "path/to/

assets").

Where to find the default assets

You can download the default assets as a zip file.

Look at the folder imgui_bundle/bindings/imgui_bundle/assets to see its content.

January 21, 2026 45 of 76

https://traineq.org/ImGuiBundle/assets.zip
https://github.com/pthom/imgui_bundle/tree/main/bindings/imgui_bundle/assets

|

3.c. Multiplatform C++ applications

When developing C++ applications, Hello ImGui and Dear ImGui Bundle offer an

excellent support for multiplatform applications.

See this tutorial video for Hello ImGui:

January 21, 2026 46 of 76

|

January 21, 2026 47 of 76

https://www.youtube.com/watch?v=dArP4lBnOr8

|

Tip

The principle with Dear ImGui Bundle is the same as described in the video, just

use the dedicated Dear ImGui Bundle project template, and use

imgui_bundle_add_app

January 21, 2026 48 of 76

|

3.d. Debug native C++ in python bindings

ImGui Bundle provides tooling to help you debug the C++ side, when you encounter

a bug that is difficult to diagnose from Python.

It can be used in two steps:

1 Edit the file pybind_native_debug/pybind_native_debug.py. Change its content

so that it runs the python code you would like to debug. Make sure it works when

you run it as a python script.

2. Now, debug the C++ project pybind_native_debug which is defined in the

directory pybind_native_debug/. This will run your python code from C++,

and you can debug the C++ side (place breakpoints, watch variables, etc).

January 21, 2026 49 of 76

|

4. Runners (Hello ImGui & ImmApp)

4.a. Intro to Runners

ImGui Bundle uses two main libraries to manage the application lifecycle: Hello

ImGui and ImmApp.

4.a.i. Hello ImGui vs ImmApp:

• Hello ImGui: A “starter pack” for Dear ImGui. It handles window creation,

backend initialization (SDL, GLFW, etc.), cross-platform assets, docking, and

more.

• ImmApp (Immediate App): A thin wrapper around Hello ImGui specifically

designed for ImGui Bundle. Its main purpose is to simplify the initialization of

add-ons (like ImPlot or Markdown) that require specific setup.

4.a.ii. Starting an Application:

The simplest way to start an application is to use immapp.run() (Python) or

ImmApp::Run() (C++).

Python

In Python, immapp.run accepts a gui_function and several optional parameters

to quickly configure the window and add-ons.

from imgui_bundle import immapp, imgui

def gui():
 imgui.text("My App")

immapp.run(
 gui,
 window_title="Hello",
 window_size=(800, 600)
)

C++

In C++, you typically use a lambda or a function pointer for the GUI, and pass

configuration via SimpleRunnerParams.

#include "immapp/immapp.h"
#include "imgui.h"

int main() {
 auto gui = []() { ImGui::Text("My App"); };
 ImmApp::Run(gui, "Hello", {800, 600});
 return 0;
}

January 21, 2026 50 of 76

https://github.com/pthom/hello_imgui

|

Note

You may also call hello_imgui.run() (Python) or HelloImGui::Run() (C++), but

in that case you cannot use addons, such as ImPlot; unless you initialize them

manually.

4.a.iii. Activating Add-ons with ImmApp:

Many libraries in the bundle (like ImPlot or imgui_md) require initialization at

startup (e.g., creating contexts or loading specific fonts). ImmApp manages this via

AddOnsParams.

Python

from imgui_bundle import immapp, implot, imgui_md

def gui():
 imgui_md.render("# Title")
 if implot.begin_plot("My Plot"):
 # ...
 implot.end_plot()

immapp.run(
 gui,
 with_implot=True, # Activates ImPlot context
 with_markdown=True # Loads Markdown fonts
)

C++

#include "immapp/immapp.h"

int main() {
 auto gui = []() { /* ... */ };

 HelloImGui::SimpleRunnerParams runnerParams;
 runnerParams.guiFunction = gui;

 ImmApp::AddOnsParams addons;
 addons.withImplot = true;
 addons.withMarkdown = true;

 ImmApp::Run(runnerParams, addons);
 return 0;
}

4.a.iv. Advanced: Manual Rendering:

January 21, 2026 51 of 76

|

If you need complete control over the render loop, you can use the functions inside

hello_imgui.manual_render, or immapp.manual_render, instead of the standard

run() functions.

Python

from imgui_bundle import imgui, hello_imgui, immapp

Setup
runner_params = hello_imgui.RunnerParams()
runner_params.callbacks.show_gui = lambda: imgui.text("Hello, ImGui
Bundle!")
addons = immapp.AddOnsParams()
addons.with_implot = True
immapp.manual_render.setup_from_runner_params(runner_params, addons)

Render loop
while not hello_imgui.get_runner_params().app_shall_exit:
 hello_imgui.manual_render.render()
 # Do other work here if needed

Cleanup
hello_imgui.manual_render.tear_down()

C++

#include "imgui.h"
#include "hello_imgui/hello_imgui.h"
#include "immapp/immapp.h"

int main()
{
 // Setup
 HelloImGui::RunnerParams runnerParams;
 runnerParams.callbacks.ShowGui = []() {
 ImGui::Text("Hello, ImGui Bundle!");
 };
 ImmApp::AddOnsParams addons;
 addons.withImplot = true;
 ImmApp::ManualRender::SetupFromRunnerParams(runnerParams,
addons);

 // Render loop
 while (!HelloImGui::GetRunnerParams().app_shall_exit) {
 ImmApp::ManualRender::Render();
 // Do other work here if needed
 }

 // Cleanup
 ImmApp::ManualRender::TearDown();

January 21, 2026 52 of 76

|

 return 0;
}

This approach is useful for:

• Custom event loops

• Integration with other frameworks

• Fine-grained control over frame timing

(For python users, also see the page on async usage for more info and performance

tips.)

January 21, 2026 53 of 76

/python/python-async

|

4.b. Hello ImGui

Dear ImGui Bundle includes Hello ImGui, which is itself based on ImGui. “Hello

ImGui” can be compared to a starter pack that enables to easily write cross-platform

Gui apps for Windows, macOS, Linux, iOS, and emscripten.

4.b.i. API & Usage:

RunnerParams

Applications can be fully configured via RunnerParams (this incudes window size, app

icon, fps settings, etc.). hello_imgui.get_runner_params() will return the

runnerParams of the current application.

See the Application parameters doc.

API

See the “Hello ImGui” API doc.

4.b.ii. Features:

Multiplatform utilities

• Truly multiplatform: Linux, Windows, macOS, iOS, Android, emscripten (with 4

lines of CMake code)

• Easily embed assets on all platforms (no code required)

• Customize app settings (icon and app name for mobile platforms, etc.- no code

required)

• Customize application icon on all platforms (including mobile and macOS - no

code required)

Dear ImGui Tweaks

• Power Save mode: reduce FPS when idling

• High DPI support: scale UI according to DPI, whatever the platform

• Advanced layout handling: dockable windows, multiple layouts

• Window geometry utilities: autosize application window, restore app window

position

• Theme tweaking: extensive list of additional themes

• Support for movable and resizable borderless windows

• Advanced font support: icons, emojis and colored fonts

• Integration with ImGui Test Engine: automate and test your apps

• Save user settings: window position, layout, opened windows, theme, user

defined custom settings

• Easily add a custom 3D background to your app

Backends

• Available platform backends: SDL2, Glfw3

January 21, 2026 54 of 76

https://github.com/pthom/hello_imgui
https://pthom.github.io/hello_imgui/book/doc_params.html
https://pthom.github.io/hello_imgui/book/doc_api.html

|

• Available rendering backends: OpenGL3, Metal, Vulkan, DirectX

Note

The usage of Hello ImGui is optional. You can also build an imgui application

from scratch, in C++ or in python (see python example)

Tip

HelloImGui is fully configurable by POD (plain old data) structures. See their

description

4.b.iii. Advanced layout and theming with Hello ImGui::

See the demo named “demo_docking”, which demonstrates:

• How to handle complex layouts: you can define several layouts and switch

between them: each layout which will remember the user modifications and the

list of opened windows

• How to use theming

• How to store you own user settings in the app ini file

• How to add a status bar and a log window

• How to reduce the FPS when idling (to reduce CPU usage)

Links:

• See demo_docking.py

• See demo_docking.cpp

• Run this demo online

• See a short video explanation about layouts on YouTube

January 21, 2026 55 of 76

https://github.com/pthom/imgui_bundle/tree/main/bindings/imgui_bundle/demos_python/demos_immapp/imgui_example_glfw_opengl3.py
https://pthom.github.io/hello_imgui/book/doc_params.html
https://github.com/pthom/imgui_bundle//blob/main/bindings/imgui_bundle/demos_python/demos_immapp/demo_docking.py
https://github.com/pthom/imgui_bundle//blob/main/bindings/imgui_bundle/demos_cpp/demos_immapp/demo_docking.cpp
https://traineq.org/ImGuiBundle/emscripten/bin/demo_docking.html
https://www.youtube.com/watch?v=XKxmz__F4ow

|

4.c. ImmApp - Immediate App

ImGui Bundle includes a library named ImmApp (which stands for Immediate App).

ImmApp is a thin extension of HelloImGui that enables to easily initialize the

ImGuiBundle addons that require additional setup at startup

4.c.i. API:

• C++ API-

• Python API

4.c.ii. How to start an application with addons:

Some libraries included by ImGui Bundle require an initialization at startup. ImmApp

makes this easy via AddOnParams.

The example program below demonstrates how to run an application which will use

implot (which requires a context to be created at startup), and imgui_md (which

requires additional fonts to be loaded at startup).

Python

import numpy as np
imgui_bundle is a package that provides several imgui-related
submodules
from imgui_bundle import (imgui, # first we import ImGui
 implot, # ImPlot provides advanced
real-time plotting
 imgui_md, # imgui_md: markdown rendering
for imgui
 hello_imgui, # hello_imgui: starter pack
for imgui apps
 immapp, # helper to activate addons
(like implot, markdown, etc.)
)

def gui():
 # Render some markdown text
 imgui_md.render_unindented("""
 # Render an animated plot with ImPlot
 This example shows how to use `ImPlot` to render an animated
plot,
 and how to use `imgui_md` to render markdown text (*this text!*).
 """)

 # Render an animated plot
 if implot.begin_plot(
 title_id="Plot",
 # size in em units (1em = height of a character)
 size=hello_imgui.em_to_vec2(40, 20)):
 x = np.arange(0, np.pi * 4, 0.01)
 y = np.cos(x + imgui.get_time())

January 21, 2026 56 of 76

https://github.com/pthom/imgui_bundle/tree/main/external/immapp/immapp/runner.h
https://github.com/pthom/imgui_bundle/tree/main/bindings/imgui_bundle/immapp/immapp_cpp.pyi

|

 implot.plot_line("y1", x, y)
 implot.end_plot()

 if imgui.button("Exit"):
 hello_imgui.get_runner_params().app_shall_exit = True

def main():
 # This call is specific to the ImGui Bundle interactive manual.
 from imgui_bundle.demos_python import demo_utils
 demo_utils.set_hello_imgui_demo_assets_folder()

 # Run the app with ImPlot and markdown support
 immapp.run(gui,
 with_implot=True,
 with_markdown=True,
 window_size=(700, 500))

if __name__ == "__main__":
 main()

C++

#include "immapp/immapp.h"
#include "imgui_md_wrapper/imgui_md_wrapper.h"
#include "implot/implot.h"
#include "demo_utils/api_demos.h"
#include <vector>
#include <cmath>

int main(int, char**)
{
 constexpr double pi = 3.1415926535897932384626433;
 std::vector<double> x, y1, y2;
 for (double _x = 0; _x < 4 * pi; _x += 0.01)
 {
 x.push_back(_x);
 y1.push_back(std::cos(_x));
 y2.push_back(std::sin(_x));
 }

 auto gui = [x,y1,y2]()
 {
 ImGuiMd::Render("# This is the plot of _cosinus_ and
sinus"); // Markdown
 if (ImPlot::BeginPlot("Plot"))
 {
 ImPlot::PlotLine("y1", x.data(), y1.data(), x.size());
 ImPlot::PlotLine("y2", x.data(), y2.data(), x.size());

January 21, 2026 57 of 76

|

 ImPlot::EndPlot();
 }
 };

 HelloImGui::SimpleRunnerParams runnerParams { .guiFunction =
gui, .windowSize = {600, 400} };
 ImmApp::AddOnsParams addons { .withImplot = true, .withMarkdown =
true };
 ImmApp::Run(runnerParams, addons);

 return 0;
}

January 21, 2026 58 of 76

|

4.d. Application Settings

ImGui applications usually store settings such as window positions, opened windows

(etc.), in a file “imgui.ini”. HelloImGui and ImmApp extend this functionality by

storing additional settings such as application layouts, status bar settings, and user-

defined custom settings.

4.d.i. Settings location:

By default, the settings are stored in a ini file whose named is derived from the

window title (i.e. runnerParams.appWindowParams.windowTitle). This is convenient

when developing, but not so much when deploying the app.

You can finely define where they are stored by filling runnerParams.iniFolderType

and runnerParams.iniFilename.

runnerParams.iniFolderType

Choose between: CurrentFolder, AppUserConfigFolder, AppExecutableFolder,

HomeFolder, TempFolder and DocumentsFolder.

Note

AppUserConfigFolder corresponds to ...\[Username]\AppData\Roaming under

Windows, ~/.config under Linux, ~/Library/Application Support under

macOS or iOS

runnerParams.iniFilename

This will be the name of the ini file in which the settings will be stored. It can include

a subfolder, in which case it will be created under the folder defined by

runnerParams.iniFolderType.

Note

if left empty, the name of the ini file will be derived from

appWindowParams.windowTitle.

4.d.ii. Settings content:

The settings file contains, standard ImGui settings (window position, size, etc.), as

well as additional settings defined by HelloImGui:

• Application status: app window location, opened windows, status bar settings,

etc. See members named remember_xxx in the parameters doc for a complete

list.

• Settings for each application layout (see video for an example)

4.d.iii. Store custom settings:

January 21, 2026 59 of 76

https://github.com/pthom/hello_imgui/blob/master/src/hello_imgui/doc_params.md
https://www.youtube.com/watch?v=XKxmz__F4ow

|

You may store additional user settings in the application settings. This is provided as

a convenience only, and it is not intended to store large quantities of text data. See

related doc for more details.

January 21, 2026 60 of 76

https://github.com/pthom/hello_imgui/blob/master/src/hello_imgui/doc_api.md\#store-user-settings-in-the-ini-file

|

4.e. Tips

4.e.i. Correctly size and position the widgets:

It is almost always a bad idea to use fixed sizes. This will lead to portability issues,

especially on high-DPI screens.

Instead of using fixed pixel sizes, it is recommended to use sizes relative to the font

size, aka “em” units.

Tip

See the definition of the em CSS Unit.

To achieve this, you should multiply your positions and sizes by

ImGui::GetFontSize() (C++), or imgui.get_font_size() (Python).

In order to make this simpler, the HelloImGui::EmToVec2 (C++) or

hello_imgui::em_to_vec2 (Python) function below can greatly reduce the friction: it

transforms a size in “em” units to a size in pixels.

Example with Python:

from imgui_bundle import imgui, hello_imgui

def gui():
 imgui.button("A button", hello_imgui.em_to_vec2(10, 2)) # 10em x
2em button

Example with C++:

#include "imgui.h"
#include "hello_imgui/hello_imgui.h"

void gui() {
 ImGui::Button("A button", HelloImGui::EmToVec2(10, 2)); // 10em x
2em button
}

Note

• EmSize(x) functions are also available to get only one dimension in pixels.

(e.g., hello_imgui.em_size(2) or HelloImGui::EmSize(2)).

• EmToVec2 and EmSize are also available in the immapp module in Python, and

in the ImmApp namespace in C++.

January 21, 2026 61 of 76

https://en.wikipedia.org/wiki/Em_(typography)

|

5. Support

5.a. Support the project

Dear ImGui Bundle is a free and open-source project, and its development and

maintenance require considerable efforts.

If you find it valuable for your work – especially in a commercial enterprise or a

research setting – please consider supporting its development by making a donation.

Your contributions are greatly appreciated!

For commercial users seeking tailored support or specific enhancements, please

contact the author by email. Contribute

Quality contributions are always welcome! If you’re interested in contributing to the

project, whether through code, ideas, or feedback, please refer to the development

documentation. License

Dear ImGui Bundle is licensed under the MIT License

January 21, 2026 62 of 76

https://www.paypal.com/donate/?hosted_button_id=SHJ68RVDKURZA
https://github.com/pthom/imgui_bundle/blob/main/LICENSE

|

5.b. Closing words

5.b.i. Who is this project for:

Dear ImGui Bundle aims to make applications prototyping fast and easy, in a

multiplatform / multi-tooling context. The intent is to reduce the time between an

idea and a first GUI prototype down to almost zero.

It is well adapted for

• developers and researchers who want to switch easily between and research and

development environment by facilitating the port of research artifacts

• beginners and developers who want to quickly develop an application without

learning a GUI framework

5.b.ii. Who is this project not for:

You should prefer a more complete framework (such as Qt for example) if your intent

is to build a fully fledged application, with support for internationalization, advanced

styling, etc.

Also, the library makes no guarantee of ABI stability, and its API is opened to slight

adaptations and breaking changes if they are found to make the overall usage better

and/or safer.

5.b.iii. License:

The MIT License (MIT)

Copyright (c) 2021-2024 Pascal Thomet

Permission is hereby granted, free of charge, to any person obtaining a copy of this

software and associated documentation files (the “Software”), to deal in the Software

without restriction, including without limitation the rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to the following

conditions:

The above copyright notice and this permission notice shall be included in all copies

or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR

OTHER DEALINGS IN THE SOFTWARE.

5.b.iv. About the author:

January 21, 2026 63 of 76

|

Dear ImGui Bundle is developed by Pascal Thomet. I am reachable on my Github

page. I sometimes blog. There is a playlist related to ImGui Bundle on YouTube.

I have a past in computer vision, and a lot of experience in the trenches between

development and research teams; and I found ImGui to be a nice way to reduce the

delay between a research prototype and its use in production code.

I also have an inclination for self documenting code, and the doc you are reading was

a way to explore new ways to document projects.

5.b.v. How is Dear ImGui Bundle developed:

The development of the initial version of Dear ImGui Bundle took about one year at

full time.

The bindings are auto-generated thanks to an advanced parser, so that they are easy

to keep up to date.

Please be tolerant if you find issues! Dear ImGui Bundle is developed for free, under a

very permissive license, by one main author (and most of its API comes from external

libraries).

If you need consulting about this library or about the bindings generator in the

context of a commercial project, please contact me by email.

Contributions are welcome!

5.b.vi. Thanks:

Dear ImGui Bundle would not be possible without the work of the authors of “Dear

ImGui”, and especially Omar Cornut.

It also includes a lot of other projects, and I’d like to thank their authors for their

awesome work!

A particular mention for Evan Pezent (author of ImPlot), Cédric Guillemet (author of

ImGuizmo), Balázs Jákó (author of ImGuiColorTextEdit), and Michał Cichoń (author

of imgui-node-editor), and Dmitry Mekhontsev (author of imgui-md), Andy Borrel

(author of imgui-tex-inspect, another image debugging tool, which I discovered long

after having developed immvision).

Immvision was inspired by The Image Debugger, by Bill Baxter.

January 21, 2026 64 of 76

https://github.com/pthom
https://github.com/pthom
http://code-ballads.net/
https://www.youtube.com/playlist?list=PLaJx_KrDECZPzttQ77Gv8DD7OAUwmtWUc
https://www.miracleworld.net/
https://billbaxter.com/projects/imdebug/

|

6. Developper docs

6.a. Intro - Developer docs

This section is for developers willing to build and modify the imgui_bundle library. It

covers topics such as building the library, updating dependencies, and adding new

features or bindings.

January 21, 2026 65 of 76

|

6.b. Repository folders structure

Below is the folders structure of Dear ImGui Bundle repository:

./
+-- Readme.md -> bindings/imgui_bundle/Readme.md # doc
+-- Readme_devel.md
|
+-- _example_integration/ # Demonstrate how to
easily use
| +-- CMakeLists.txt # imgui_bundle in a C+
+ app
| +-- assets/ # (this is a github
template available a
| +-- hello_world.main.cpp # https://github.com/
pthom/imgui_bundle_template
|
+-- imgui_bundle_cmake/ #
imgui_bundle_add_app() :
| | # a cmake function you
can use
| +-- imgui_bundle_add_app.cmake # to create an app in
one line
|
+-- bindings/ # root for the python
bindings
| +-- imgui_bundle/
| +-- assets/ # assets/ folder: you
need to
| | # copy this folder
| | # into your app folder
if you
| | # intend to use
markdown
| |
| +-- demos_assets/ # assets used by demos
| +-- demos_cpp/ # lots of C++ demos
| +-- demos_python/ # lots of python demos
| +-- imgui/ # imgui stubs
| | +-- __init__.pyi
| | +-- backends.pyi
| | +-- internal.pyi
| | +-- py.typed
| +-- implot.pyi # implot
stubs
| +-- __init__.py
| +-- __init__.pyi
| +-- hello_imgui.pyi
| +-- ... # lots of
other libs stubs
| +-- ...
| +-- ...
| +-- immapp/ # immapp:

January 21, 2026 66 of 76

|

immediate app
| | | # utilities
| | +-- __init__.py
| | +-- __init__.pyi
| | +-- icons_fontawesome.py
| | +-- immapp_cpp.pyi
| | +-- immapp_utils.py
| | +-- py.typed
| +-- _imgui_bundle.cpython-38-darwin.so #
imGui_bundle python
| | # dynamic
library
| +-- glfw_utils.py
| +-- python_backends/ # Backends
implemented in pure python
| +-- py.typed
|
|
+-- cmake/ # Private
cmake utilities
| +-- add_imgui.cmake
| +-- ...
|
+-- external/ # Root of all
bound libraries
| +-- CMakeLists.txt
| +-- imgui/ # ImGui root
| | +-- bindings/ # ImGui
bindings
| | +-- imgui/ # ImGui
submodule
| +-- ImGuizmo/
| | +-- bindings/ # ImGuizmo
bindings
| | +-- ImGuizmo/ # ImGuizmo
submodule
| | +-- ImGuizmoPure/ # Manual
wrappers to help
| | # bindings
generation
| |
| +-- ... lots of other bound libraries/ # Lots of
other bound libraries
| | +-- {lib_name}/
| | +-- bindings/
| |
| +-- _doc/
| |
| +-- bindings_generation/ # Script to
generate bindings
| | | # and to
facilitate external

January 21, 2026 67 of 76

|

| | +-- __init__.py # libraries
update
| | +-- all_external_libraries.py
| | +-- autogenerate_all.py
| | +-- ...
| |
| +-- SDL/SDL/ # Linked
library (without
| | # python
bindings)
| +-- fplus/fplus/ # Library
without bindings
| +-- glfw/glfw # Library
without bindings
|
+-- lg_cmake_utils/ # Cmake utils
for bindings
| | # generation
| +-- lg_cmake_utils.cmake
| +-- ...
|
+-- pybind_native_debug/
| +-- CMakeLists.txt
| +-- Readme.md
| +-- pybind_native_debug.cpp
| +-- pybind_native_debug.py
|
+-- src/
| +-- imgui_bundle/ # main cpp
library: almost empty,
 # but linked
to all external libraries

January 21, 2026 68 of 76

|

6.c. Automated bindings: introduction

The bindings are generated automatically thanks to a sophisticated generator, which

is based on srcML.

The generator in provided by in litgen an automatic python bindings generator,

developed by the same author as Dear ImGui Bundle.

6.c.i. Installing the generator:

See the installation instructions (do a local installation).

6.c.ii. Quick information about the generator:

litgen (aka “Literate Generator”) is the package that will generate the python

bindings.

Its source code is available here.

It is heavily configurable by a wide range of options.

See for examples the specific options for imgui bindings generation.

6.c.iii. Folders structure:

In order to work on bindings, it is essential to understand the folders structure inside

Dear ImGui Bundle. Please study the dedicated doc.

6.c.iv. Study of a bound library generation:

Let’s take the example of the library ImCoolBar.

Tip

The processing of adding a new library from scratch is documented in Adding a

new library. It uses ImCoolBar as an example

Here is how the generation works for the library. The library principal files are

located in external/ImCoolBar:

external/ImCoolBar/ # Root folder for ImCoolBar
├── ImCoolBar/ # ImCoolBar submodule
│ ├── CMakeLists.txt # ImCoolBar code
│ ├── ImCoolbar.cpp
│ ├── ImCoolbar.h
│ ├── LICENSE
│ └── README.md
└── bindings/ # Scripts for the bindings
generations & bindings
 ├── generate_imcoolbar.py # This script reads
ImCoolbar.h and generates:
 | # - binding C++ code
in ./pybind_imcoolbar.cpp

January 21, 2026 69 of 76

https://www.srcml.org
https://pthom.github.io/litgen/litgen_book/00_00_intro.html
https://pthom.github.io/litgen/litgen_book/01_05_00_install_or_online.html\#install-litgen-locally
https://github.com/pthom/litgen
https://github.com/pthom/litgen/blob/main/src/litgen/options.py
https://github.com/pthom/imgui_bundle/blob/main/external/imgui/bindings/litgen_options_imgui.py
/devel-docs/structure
/devel-docs/bindings-newlib
/devel-docs/bindings-newlib

|

 | # - stubs in
 | # bindings/
imgui_bundle/im_cool_bar_pyi
 ├── im_cool_bar.pyi -> ../../../bindings/imgui_bundle/
im_cool_bar.pyi # this is a symlink!
 └── pybind_imcoolbar.cpp

The actual stubs are located here:

imgui_bundle/bindings/imgui_bundle/
├── im_cool_bar.pyi # Location of the stubs
├── __init__.pyi # Main imgui_bundle stub file, which
loads im_cool_bar.pyi
├── __init__.py # Main imgui_bundle python module which
loads
| # the actual im_cool_bar module
├── ...

And the library is referenced in a global generation script:

imgui_bundle/external/bindings_generation/
├── autogenerate_all.py # This script will call
generate_imcoolbar.py (among many others)
├── all_external_libraries.py # ImCoolBar is referenced here
├── ...

January 21, 2026 70 of 76

|

6.d. Update existing bindings

6.d.i. Introduction:

Run generate_LIBNAME.py:

The process for updating bindings for a given library is straightforward:

1. Update the library submodule in external/LIBNAME/LIBNAME

2. Run the generation script in external/LIBNAME/generate_LIBNAME.py

3. Compile and test python bindings (carefully study that nothing was broken)

4. Commit and push

For example with ImCoolBar, in order to update the bindings for ImCoolBar, one

needs to run:

python external/ImCoolBar/bindings/generate_imcoolbar.py

Submodules maintenance:

external/bindings_generation contains some scripts for the submodules maintenance.

See this extract of external/bindings_generation/all_external_libraries.py, which

shows that imgui and imgui_test_engine are using forks.

These forks include small modifications added for compatibility with imgui_bundle

(most modifications are small changes to accommodate with python bindings).

def lib_imgui() -> ExternalLibrary:
 return ExternalLibrary(
 name="imgui",
 official_git_url="https://github.com/ocornut/imgui.git",
 official_branch="docking",
 fork_git_url="https://github.com/pthom/imgui.git"
)

def lib_imgui_test_engine() -> ExternalLibrary:
 return ExternalLibrary(
 name="imgui_test_engine",
 official_git_url="https://github.com/ocornut/imgui_test_engine.
git",
 official_branch="main",
 fork_git_url="https://github.com/pthom/imgui_test_engine.git",
)

When using forked libraries, the git remote name for the fork is “fork”, and the

remote name for the official repository is “official”.

Reattach all submodules to their upstream branch

By default, all submodules, are in mode “detached head”. We need to attach them to

the correct remote/branch.

January 21, 2026 71 of 76

https://github.com/pthom/imgui_bundle/tree/main/external/bindings_generation
https://github.com/pthom/imgui_bundle/tree/main/external/bindings_generation/all_external_libraries.py

|

We can use the utilities from external/bindings_generation:

For example, external/bindings_generation/sandbox.py contains this:

from bindings_generation import all_external_libraries

all_external_libraries.reattach_all_submodules()

It will reattach all submodules to the correct remote/branch.

6.d.ii. Example: update imgui & bindings:

Tip

This video demonstrates from starts to finish the process of updating imgui and

its bindings (17 minutes).

Update imgui and imgui_test_engine:

First, add a tag to our forks

Since we will be updating our imgui and imgui_test_engine forks via a rebase, we

should push a tag, so that old versions remain accessible on GitHub.

In this example, the current version of imgui_bundle is v1.0.0-beta1. So we push a

“bundle_1.0.0-beta1” tag to the forks.

cd external/imgui/imgui
git tag "bundle_1.0.0-beta1"
git push fork --tags
cd -

cd external/imgui_test_engine/imgui_test_engine
git tag "bundle_1.0.0-beta1"
git push fork --tags
cd -

Then rebase our forks on the official branch changes

cd external/imgui/imgui
git rebase official/docking
cd -

cd external/imgui_test_engine/imgui_test_engine
git rebase official/main
cd -

Run generate_imgui.py:

Run generate_imgui

We will run external/imgui/bindings/generate_imgui.py.

It will generate the python bindings for imgui, imgui_internal and imgui_test_engine.

January 21, 2026 72 of 76

https://github.com/pthom/imgui_bundle/tree/main/external/bindings_generation/sandbox.py
https://youtu.be/QeBCxU7tn68
https://github.com/pthom/imgui_bundle/tree/main/external/imgui/bindings/generate_imgui.py

|

See main() function of generate_imgui.py:

def main():
 autogenerate_imgui()
 autogenerate_imgui_internal()
 autogenerate_imgui_test_engine()

Examine the changes Look at the changes, and check if they look ok

Compile & Test:

Correct possible compilation errors due to breaking changes in imgui’s API

Test in C++

Run demo_imgui_bundle

(demo_imgui_bundle is a global demonstration program, that uses most of the feature

of all libraries)

Test in Python

Run demo_imgui_bundle.py

Update forked submodules::

if some forked submodules required to be changed:

• tag them, push the tag

• rebase the fork branch on the official branch

• push the changes

January 21, 2026 73 of 76

|

6.e. Adding a new library to the bindings

This example is based on the addition of ImCoolBar, which was added in Oct 2023.

6.e.i. Step 1: Reference the new library:

Tip

All the modifications done in step 1 can be seen in this commit.

Step 1-a: Add needed folders, files and submodules inside external/:

Add the library as a submodule in external/lib_name/lib_name:

If the library can be included without adaptations for inclusion inside ImGui Bundle,

you can add it directly as a submodule.

mkdir external/ImCoolBar
git submodule add https://github.com/aiekick/ImCoolBar.git external/
ImCoolBar/ImCoolBar

However, if it requires adaptations, you need to create a fork (it was the case for

ImCoolBar): So, the following actions were done separately:

• ImCoolBar was cloned into github.com/pthom/ImCoolBar.git

• a branch imgui_bundle was created and pushed to github. It will contain the

adaptations and bug corrections for imgui_bundle.

Then, we add this fork as a submodule.

git submodule add https://github.com/pthom/ImCoolBar.git external/
ImCoolBar/ImCoolBar
cd external/ImCoolBar/ImCoolBar
git checkout imgui_bundle
cd -

Create the folder external/lib_name/bindings/:

Copy the folder external/bindings_generation/bindings_generator_template into

external/lib_name/bindings/

cp -r external/bindings_generation/bindings_generator_template external/
ImCoolBar/bindings

Rename files in external/lib_name/bindings:

After having copied the template files, we need to rename them. In the example of

ImCoolbar, we will rename them as follows:

 mv external/ImCoolBar/bindings/generate_LIBNAME.py external/ImCoolBar/
bindings/generate_imcoolbar.py
mv external/ImCoolBar/bindings/pybind_LIBNAME.cpp external/ImCoolBar/
bindings/pybind_imcoolbar.cpp
im_cool_bar will be the final name of the python module:

January 21, 2026 74 of 76

https://github.com/aiekick/ImCoolBar
https://github.com/pthom/imgui_bundle/commit/68e6f3b3a5e812a1a3ddea275ad24296df5b7ce6
http://github.com/pthom/ImCoolBar.git

|

imgui_bundle.im_cool_bar
mv external/ImCoolBar/bindings/LIBNAME.pyi external/ImCoolBar/bindings/
im_cool_bar.pyi

Move external/ImCoolBar/bindings/im_cool_bar.pyi to bindings/imgui_bundle/:

The stub file (*.pyi) must be inside bindings/imgui_bundle. In order to facilitate

development, we will create a symlink to it inside external/ImCoolBar/bindings/

mv external/ImCoolBar/bindings/im_cool_bar.pyi bindings/imgui_bundle/
im_cool_bar.pyi
cd external/ImCoolBar/bindings/
ln -s ../../../bindings/imgui_bundle/im_cool_bar.pyi .
cd -

Final folder structure:

We end up with the following structure:

external/ImCoolBar/
├── ImCoolBar/ # Note that the submodule is inside
│ ├── CMakeLists.txt # external/ImCoolBar/ImCoolBar/ !!!
│ ├── ImCoolbar.cpp
│ ├── ImCoolbar.h
│ ├── LICENSE
│ └── README.md
└── bindings/
 ├── im_cool_bar.pyi # We will edit and rename those
files later
 ├── generate_imcoolbar.py -> symlink to ../../../bindings/
imgui_bundle/im_cool_bar.pyi
 └── pybind_imcoolbar.cpp

Step 1-b: Update python generator manager:

Update external/bindings_generation/all_external_libraries.py

Add a function that returns info about this new library:

def lib_imcoolbar() -> ExternalLibrary:
 return ExternalLibrary(
 name="ImCoolBar",
 official_git_url="https://github.com/aiekick/ImCoolBar.git",
 official_branch="master",
 fork_git_url="https://github.com/pthom/ImCoolBar.git",
 fork_branch="imgui_bundle"
)

ALL_LIBS = [
 lib_imgui(), # must be first as it declare bindings used by the
next ones
 # ...

January 21, 2026 75 of 76

|

 lib_imcoolbar(), # Add the lib here
 # ...

Step 1-c: Update the C++ sources to include the new lib binding generation:

In external/CMakeLists.txt: Add a cmake directive to compile the new library.

If the library is "simple" to compile you can use
`add_simple_external_library_with_sources`
add_simple_external_library_with_sources(imcoolbar ImCoolBar)

In external/bindings_generation/cpp/all_pybind_files.cmake:

add external/ImCoolBar/bindings/pybind_imcoolbar.cpp

Note

the script external/bindings_generation/autogenerate_all.py will also regenerate

this file from scratch.

In external/bindings_generation/cpp/pybind_imgui_bundle.cpp:

Add the bindings

// ... Near the start of the file, add a new function declaration
void py_init_module_imgui_command_palette(py::module& m);
void py_init_module_implot_internal(py::module& m);
void py_init_module_imcoolbar(py::module& m); // added this line
// ...

void py_init_module_imgui_bundle(py::module& m)
{
 // ...

 // At the end of py_init_module_imgui_bundle, register your new
python module
 auto module_imcooolbar = m.def_submodule("im_cool_bar"); // the
python module will be known as imgui_bundle.im_cool_bar
 py_init_module_imcoolbar(module_imcooolbar);

Now, run cmake.

Step 1-d: Edit and adapt the generation scripts:

Edit the 3 files inside external/ImCoolBar/bindings and replace occurrences of

LIBNAME with appropriate values.

Step 1-e: Edit and adapt the imgui_bundle init scripts:

In bindings/imgui_bundle

January 21, 2026 76 of 76

	1 Introduction
	1.a Bundled Libraries
	1.a.i Full list of included libraries
	1.a.ii Key Features
	1.a.ii.i Works everywhere
	1.a.ii.ii First class support for Python
	1.a.ii.iii Easy to use & well documented
	1.a.ii.iv Always up-to-date

	1.b Immediate GUI
	1.b.i What is an Immediate GUI
	1.b.ii Dear ImGui
	1.b.iii Get started in no time with Hello ImGui and ImmApp
	1.b.iii.i Hello World in 4 lines
	1.b.iii.ii A more complete example with plots

	1.b.iv Quickly deploy your apps on the web

	1.c Interactive Manuals
	1.c.i Dear ImGui Manual
	1.c.ii Dear ImGui Bundle Interactive Manual
	1.c.iii Online Python playground

	1.d Examples and Gallery
	1.d.i Examples in the interactive manual
	1.d.i.i Complex layouts with docking windows
	1.d.i.ii Custom 3D Background
	1.d.i.iii Display & analyze images with ImmVision
	1.d.i.iv Test & Automation with ImGui Test Engine

	1.d.ii Example Applications Gallery
	1.d.ii.i 4K4D
	1.d.ii.ii HDRview

	1.e Resources
	1.e.i Interactive demos & manuals
	1.e.ii Documentation websites
	1.e.iii YouTube Playlist
	1.e.iv DeepWiki
	1.e.v Repositories
	1.e.vi Full PDF manuals for LLMs

	2 For Python users
	2.a Introduction
	2.a.i Immediate GUI in Python with Dear ImGui Bundle
	2.a.ii Anatomy of an application with Dear ImGui Bundle
	2.a.iii Deploy your applications

	2.b Install for Python
	2.b.i Install from pypi
	2.b.ii Install from source
	2.b.iii Run the python demo

	2.c Tips
	2.c.i Context Managers
	2.c.ii Advanced glfw callbacks
	2.c.iii Display Matplotlib plots in ImGui
	2.c.iv Read the libraries doc as a Python developer
	2.c.iv.i General advices
	2.c.iv.ii Enums and TextInput
	2.c.iv.iii Dear ImGui C++ vs Python API

	2.d Assets folder
	2.e Pure Python Backends
	2.f Async Support
	2.f.i Overview
	2.f.ii Quick Example
	2.f.iii Automatic FPS Optimization
	2.f.iv Signature Patterns
	2.f.iv.i 1. Simple GUI Function
	2.f.iv.ii 2. Full RunnerParams (Maximum Control)

	2.f.v Yielding to the Event Loop
	2.f.vi Troubleshooting
	2.f.vi.i GUI Freezes
	2.f.vi.ii Exceptions in the async GUI

	2.g Jupyter Notebook support
	2.g.i Introduction
	2.g.ii Blocking mode
	2.g.ii.i API
	2.g.ii.ii Example

	2.g.iii Non blocking mode
	2.g.iii.i API
	2.g.iii.i.i start
	2.g.iii.i.ii is_running
	2.g.iii.i.iii stop

	2.g.iii.ii Example
	2.g.iii.ii.i Start the application
	2.g.iii.ii.ii Interact while the application is running
	2.g.iii.ii.iii Check if the application is running
	2.g.iii.ii.iv Stop the application
	2.g.iii.ii.v Video demonstration

	2.g.iv Example: Real-Time Data Stream Simulation
	2.g.iv.i Start the GUI
	2.g.iv.ii Simulate Data Stream
	2.g.iv.iii Video demonstration

	2.g.v Example: Real-Time AI Training and tuning

	2.h Deploy to the web with Pyodide
	2.h.i A more advanced example
	2.h.ii Online Python playground

	3 For C++ users
	3.a C++ Installation
	3.a.i Integrate Dear ImGui Bundle in your own project in 5 minutes
	3.a.ii Build from source
	3.a.iii Run the C++ demo

	3.b Assets folder
	3.c Multiplatform C++ applications
	3.d Debug native C++ in python bindings

	4 Runners (Hello ImGui & ImmApp)
	4.a Intro to Runners
	4.a.i Hello ImGui vs ImmApp
	4.a.ii Starting an Application
	4.a.iii Activating Add-ons with ImmApp
	4.a.iv Advanced: Manual Rendering

	4.b Hello ImGui
	4.b.i API & Usage
	4.b.ii Features
	4.b.iii Advanced layout and theming with Hello ImGui:

	4.c ImmApp - Immediate App
	4.c.i API
	4.c.ii How to start an application with addons

	4.d Application Settings
	4.d.i Settings location
	4.d.ii Settings content
	4.d.iii Store custom settings

	4.e Tips
	4.e.i Correctly size and position the widgets

	5 Support
	5.a Support the project
	5.b Closing words
	5.b.i Who is this project for
	5.b.ii Who is this project not for
	5.b.iii License
	5.b.iv About the author
	5.b.v How is Dear ImGui Bundle developed
	5.b.vi Thanks

	6 Developper docs
	6.a Intro - Developer docs
	6.b Repository folders structure
	6.c Automated bindings: introduction
	6.c.i Installing the generator
	6.c.ii Quick information about the generator
	6.c.iii Folders structure
	6.c.iv Study of a bound library generation

	6.d Update existing bindings
	6.d.i Introduction
	6.d.i.i Run generate_LIBNAME.py
	6.d.i.ii Submodules maintenance

	6.d.ii Example: update imgui & bindings
	6.d.ii.i Update imgui and imgui_test_engine
	6.d.ii.ii Run generate_imgui.py
	6.d.ii.iii Compile & Test
	6.d.ii.iv Update forked submodules:

	6.e Adding a new library to the bindings
	6.e.i Step 1: Reference the new library
	6.e.i.i Step 1-a: Add needed folders, files and submodules inside external/
	6.e.i.i.i Add the library as a submodule in external/lib_name/lib_name
	6.e.i.i.ii Create the folder external/lib_name/bindings/
	6.e.i.i.iii Rename files in external/lib_name/bindings
	6.e.i.i.iv Move external/ImCoolBar/bindings/im_cool_bar.pyi to bindings/imgui_bundle/
	6.e.i.i.v Final folder structure

	6.e.i.ii Step 1-b: Update python generator manager
	6.e.i.iii Step 1-c: Update the C++ sources to include the new lib binding generation
	6.e.i.iv Step 1-d: Edit and adapt the generation scripts
	6.e.i.v Step 1-e: Edit and adapt the imgui_bundle init scripts

