Fiatlight: Brighten the Journey from
|dea to Creation

Contents

e Installation

e Video Tutorials

e Tutorials list

e Sources for these videos
e First Steps

e Manual

e API

e Fiatlight Kits

e Comparisons w. other prototyping tools

Expressive Code, Instant Applications

Fiatlight bridges the gap between code and Ul, allowing you to turn ideas into fully functional
applications in minutes. It automates Ul generation for functions and structured data, making
prototyping and fine-tuning faster and easier.

For technical readers:

FiatLight provides automatic Ul generation for functions and structured data, making it a
powerful tool for rapid prototyping and application development.

Instant Widgets: Edit and visualize any Python object with fine-grained control.

Function Pipelines: Chain functions into visual and interactive workflows.

Built-in Validation & Debugging: Enforce constraints, inspect data, and replay errors.

State Persistence: Save and restore application state seamlessly.

The name “Fiatlight” is inspired by “Fiat Lux”, i.e. “Let there be light”.

Fiatlight is designed for rapid prototyping, experimentation, and fine-tuning applications. It does
not provide full design control over GUI.

Notes: this page intends to provide a high-level overview of Fiatlight’s capabilities. For detailed
tutorials, please refer to the video tutorials and the manual. Also, the demos presented in this page

are also available in the video below

Create a GUI for structured data

In the example below, the GUI definition was created automatically, from the data structure

definition of a nested pydantic BaseModel (including the validation rules, in yellow).

from fiatlight.demos.tutorials.pydantic_gui import demo_basemodel_app
demo_basemodel_app.main()

https://share.descript.com/view/tbvYBh3rpRF
https://share.descript.com/view/tbvYBh3rpRF

4k
LA NET q
i [nvalid!
Select Image Select file
Training Set Test @ Train Validation
Image Info w| 1e

A Invalid!

Geographic Info | w
latitude

longitude

Description This is a very long long description|

A Description is too long
width

height

For technical readers: See the source code for demo_basemodel_app.py. The GUI was created

automatically, from a nested Pydantic model, with custom validator.

Create a GUI for any function

Simply call fl.run with a function or a list of functions, and Fiatlight will automatically generate a
GUI for them.

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/demos/tutorials/pydantic_gui/demo_basemodel_app.py

Part 1: Standard Python code (no user interface)
#
import numpy as np

import matplotlib
matplotlib.use('Agg"')

import matplotlib.pyplot as plt

def lissajous_curve(freql: float = 5.0, freq2: float = 4.0, delta: float = np.pi /
"""Creates a Lissajous curve, and returns a Matplotlib figure."""
t = np.linspace(0, 2 * np.pi * nb_periods, 10_000)
x = np.sin(freql * t + delta)
y = np.sin(freq2 * t)
fig, ax = plt.subplots()
ax.plot(x, y)
return fig

Part 2: Add a GUI to the code in a few seconds
#

import fiatlight as fl

Options for widgets

fl.add_fiat_attributes(
lissajous_curve,
freql__range=(0, 10), freq2__range=(0, 10), delta__range=(-np.pi, np.pi),
nb_periods__range=(0.1, 10), nb_periods__edit_type="knob",

)

Run the function interactively

fl.run(lissajous_curve, app_name="Interactive Lissajou Curve")

lissajous_curve |@
aa

Creates a Lissajous curve, and returns a Matplotlib figure.

- Params
freq? 022 {LIN -}
freq2 1.589 o a
delta 0.678 E =
nb_periods e
. p—
: e
1.61
ar Output
Output = ol
7]
LoD
i]
0.50
0.2%
a.7% ::::::j
-0.50 ~ /
1,75 J— =
1.00 D —
-'_.|:-| -|:-.“- -|-I‘|-| -|:._J¢~ |:;-:| :|l.". -.|;||- |:I.". |;:-|

See the application in action in the video below

From Idea to App in 3 minutes

Create a full application in just 4 lines of Python by chaining pure Python functions into an
interactive graph. This graph visually displays each function’s inputs and outputs, allowing for

manual input adjustments.

Example: The application below is a meme generator. It is a simple composition of an Al image
generator, and a function that adds text onto an image

import fiatlight as fl
from fiatlight.fiat_kits.fiat_ai import invoke_sdx1_turbo
from fiatlight.fiat_kits.fiat_image.add_meme_text import add_meme_text

Run the composition to create a simple app
fl.run([invoke_sdx1_turbo, add_meme_text], app_name="0ld school meme generator")

Add Meme Text Q @
Generate Image BE Farams
ga & Image [¥] tmage 512 512 3 uints a
Generates an image using the Stable Diffusion XL model # params E] @ IE
Test [.ﬂ.rewe there yet?]
* prompt Profmpt for the image generation. You cen use a prompt like & fant_size B 1z
beautiful sunser over the ecean. fant_type i:_:l F D @Armm O SagTorpes
= geed: Seed for the random number generaton. Esch seed will generate a =
different image, for the same prompt. * | (L
¥ B DuEs
If you are looking for inspiration with your prompts, look a1 Lexica; text_calar ['B R: 255, G: 255, B: 255 ['El
Filtps:/flexica ant autline_colar @ R0, G0, B:0 IE]
'E Params is_image_bgr M
& promgt An exhausted baby bear hiking in the des... [EI Dutput
seed | A Cunpur @
'E Output [Show channels
o Qe n

E] Show channels

88680

Wintd 512x512 - Zoom:0.592

]

This can be used as a full application:

e All inputs are saved: prompt, and meme text, font, color, position of the text
e All preferences are saved: window size, position, and layout of the nodes

e The user can save and load different state of the application (i.e. different memes)

For technical readers: invoke_sdxl_turbo provides a simple wrapper to SDXL, and

add_meme_text Is a Python function that adds colored text onto an image.

Domain-specific Kits:

fiatlight.fiats_kits isintended to provide a set of pre-built functions and widgets for various
domains, such as:

* Image analysis: Sophisticated image analysis and manipulation widgets. See fiat_image.

» Data Visualization: Display interactive data plots and charts for real-time data analysis, using
MatPlotlib or ImPlot. See fiat_matplotlib, and fiat_implot (for ImPlot)

» Data Exploration: Provide widgets for exploring dataframes. See fiat_dataframe.

e Al: (Draft) Provide a widget for Prompt entry, and an interface to Stable Diffusion. See fiat_ai.

Image analysis

The example below shows an image which undergoes a pipeline for a dilated edge extraction. The

image viewer can pan & zoom the images in sync, and display the pixel values

import fiatlight as fl
from fiatlight.fiat_kits.fiat_image import image_from_file
from fiatlight.demos.images.demo_canny import canny, dilate

fl.run([image_from_file, canny, dilate], app_name="demo_computer_vision'")

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_kits/fiat_ai
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_kits/fiat_ai/invoke_sdxl_turbo.py
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/demos/images/old_school_meme.py

image_from_file s canny (@ —| & dilate (i)

= &
=a L =9
Read an image from a fila. Note: This function uses OpanCy param image: Image: Inpul image to which Canny filter will be applied param Dilate the image using the specified kernel shape and size
to radd the [mage, but It rakes sure 15 return the irmage in t_lower: T_lower: Lower threshold value in Hysteresis Thresholding :param
RGE order. t_upper. Upper threshold value in Hysteresiz Thresholding :param aperture_size: This s often used to increase the thickness of detected objects in an image. N
aperture size of the Sobel filter, ;param |2_gragient Boolean parameter used for e I keemel zize a1, the il atic wil da pothing
o R more precision in caleulating Edge Gradient. -param blur_sigma: Optional sigma
Select file] p1sbenhkurhwal jog (4] (B9 value for Gaussian Blur applied before Canny (skip if 0) returnc a binary image g ar Params
@ ir Output with edges detected using Canny filter il ¥| Image (2108, 4031) uinté L)
Output - e & _ @ 3F Params o8
Show channels @’ im. B| Image (2109, 4031, 3) wintd Q norph shape Default value: MorphShape.MORPH_ELLIPSE [+]
&5 72l .. 1e+0d) L] = e
5 0H.373e+04 (D ... 1e=05] LI - | @ 3F Output
Cutput
APERTURE 3 () APERTURE.S (@0 aPErTURE 7 [N (B P o Qo
gradien v Ll
4 1.087 LI - 1

uint8 4031x2109 - Zoom:0.418

?

Inzpect

— - E—
uinté 40312109 - Zoom:0.885

. wintd 4021x2109 - Zoom:0.543
Inspect .
Inspect

For technical readers: image_from_file Iis a function that reads an image from a file, canny

applies the Canny edge detection algorithm, and dilate dilates the edges.

Data visualization with Matplotlib and ImPlot

In the example below, we display figures using ImPlot (left) and Matplotlib (right). Each figure
provides user-settable parameters (in a given range, with customizable widgets). The sine wave
function is updated in real time.

from fiatlight.demos.plots import demo_mix_implot_matplotib

demo_mix_implot_matplotib.main()

https://github.com/epezent/implot
https://matplotlib.org/
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_kits/fiat_image/image_to_from_file_gui.py
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/demos/images/opencv_wrappers.py
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/demos/images/opencv_wrappers.py

Spirograph (ImPlot) (@) 2@
@ [: :] Params
& radius_Mxed_cirel | 11.966 L) .,
& radius_mowing ol 507 (LI
& pen offset 7127 L
& nb_turr el
sl L))
14.82
l§|@ Cutput
| Buro it

205 a0 5 00 5
x

15 20

For technical readers:

demo*

Data Exploration

In the example below, we display a data frame from the famous titanic example with filtering.

time_seconds 0] |_: |'_,"

‘@ Qutput @ Param
‘{;[pr 563 |’| a @ time EAT
H3 Qutput
‘Output 09.45

Gaussian Healmap (Matplotlit) |!

@ Params
& mean 1915
& variance | ER
¥o colormap Default walue: ColorMap.VIRIDIS
& 1o 14
° o
Qutput -
a

& @ %

phagze_from_time_seconds ! =] [g

1

mj(c

a
(0]

a
L]

sine Wave (ImPlot) (@) = &
(=) Parama
@@ phase 5945 o
¥o amplitude [efautt valua: 1 a
@]E Dutpust
Cutput - E o
W | ALl Fit
Flat
0.8 4
aaf
= 0
04} 7
] S .
a 1 2 3 4 5 & 7 B 9
x

Interactive Histogram (Matplotlit) E
@
n_bars

Params

& mu 0.000

]
(=]

Ol
o (@

o |
L)
o |

(@) (W

e when a function returns a matplotlib.figure.Figure , its output will be displayed as a
plot. See demo_matplotlib.py source code *
e when afunctionreturns a fiat_implot.FloatMatrix_Diml or
fiat_implot.FloatMatrix_Dim2 (which are aliases for np.ndarray), its output will be
displayed as a plot, using ImPlot. See demo_implot source code.

* ImPlot is a plotting library for Dear ImGui. It is often faster than Matplotlib, and can be
used in real-time applications. For a complete demo of ImPlot, click here: ImPlot complete

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_kits/fiat_matplotlib/demo_matplotlib.py
https://github.com/epezent/implot
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_kits/fiat_implot/demo_implot.py
https://github.com/epezent/implot
https://traineq.org/implot_demo/src/implot_demo.html
https://traineq.org/implot_demo/src/implot_demo.html

from fiatlight.fiat_kits.fiat_dataframe import dataframe_with_gui_demo_titanic
dataframe_with_gui_demo_titanic.main()

-
Titanic Data =
@ Params
Passenger Class 'f @
o survived Default value: None @ @
7 s ®an () woman B
o age_min Default value: None [E] @
& age_max 59 N | [set None L]
Cutput
Output |E a
CCORVEADEC) 98 rowes, 12 cals, Memary: 31.62 KB Rows perpage: | B 15 |
Passengerld | Survived | Pelass | Mame Sex Age [SibSp | Parch | Ticket Fare Cabin [Embarked
2 1] 2 Fynney, Mr. |§ male |350 |0 a 239865 26.0 nan 5
22 1 2 Beesley, Mr. § male |34.0 |0 a 248658 13.0 D56 5
E- 1] 2 Wheadon, M male |660 |0 o C.A, 24579 105 nan 5
n 0 2 Jenkin, Mr, St|male | 320 (0 a CA 33N 10.5 nan 5
73 o 2 Hood, Mr. Ammale | 210 |0 o 5.0.C. 14879 Tl nan 5
79 1 2 Caldwell, Mad male |0.83 |0 2 248738 29.0 nan 5
100 1] 2 Kantor, Mr. S5 male |340 |1 o 244367 26.0 nan 5
118 1] 2 Turpin, Mr. W male [23.0 |1 a 11668 21.0 nan 5
121 o 2 Hickman, Mr.| male |21.0 |2 o 5.0.C. 14879 735 nan 5
123 0 2 Nasser, Mr. N male [325 |1 a 237736 30.0708 | nan C
135 0 2 Sobey, Mr. 53 male |250 |0 Lo} C.A 29178 13.0 nan 5
136 0 2 Richard, Mr. f male |23.0 |0 0 SC/PARIS 2133 15.0458 | nan C
145 0 2 Andrew, Mr. §male | 180 (0 a 231945 1.5 nan 5
146 0 2 Nicholls, Mr. | male [19.0 |1 1 C.A 33112 36.75 |nan 5
149 0 2 Navratil, Mr. {male |365 |0 2 230080 26.0 F2 5

Al - Image generation

survival_rate_plot
®

df
2

0g

Faram
E] DataFrame: 98 rows, 12 cols (...}

Survival Rate

08}

07 |

0.6 §

0.5

0.4 F

03}

0.2}

0.1k " M . ’ . N
01 02 03 04 05 06 07 08 09

age_histogram_plot

Param
@ DataFrame: 98 rows, 12 cols (...}

|s0 e

(=)
LG

=g
LY

Age Distribution

HAge

Count
o

Example: the application below generates images using a stable diffusion model, and enables to

add effects to it (color transformation, add colored edges).

import fiatlight as fl
from fiatlight.fiat_kits.fiat_ai import invoke_sdx1l_turbo

from fiatlight.fiat_kits.fiat_image import lut_channels_in_colorspace
from fiatlight.demos.images.toon_edges import add_toon_edges

fl.run([invoke_sdx1_turbo, lut_channels_in_colorspace, add_toon_edges], app_name="S

Add Toon Edges (@) = g
Q Params
Generate Image (@) (e lut_channels_in_colorspace (@) 2@ @& image (¥ Image (512, 512, 3) uind Q))
[Q] ::] Params 6 E Pﬂams # Edges Params : E 3] [E [!\
& prompt a taddy bear reading 2 journal in the bu... |‘,J _ﬂ] -] & image |#| Image (512, 512, 3) uintd |i] HJ canny l] t_lower=2273.0 L_upper-39570.0 [2_gradie... o
sesd 1 [|‘] E] [-] S Wo lut_channel 0 Default value: Mone |q] n] dilate B kernel_size=3 morph_shape=<Morphshape.MO... E
H Output o e # lut_channel 1 : lﬁ] EI !] lhize : |_:_=.‘ T
[=| Q W @ 0380 |Gamma power [Set None| blur_sigma W eo7
Show channels 0.000 1.000 [l In ety 0.7%0
(Reset) 0.000 1.000 [} Out color = Ly
¥ lut_channel 2 Default value: Mone |‘] i] = -
Wo lut_channel 2 Default value: Mone |°.] nl a >
Wo color_space_src Defaultvalue: ColorType.BGR |3] !]
¥o color_space_lut Default value: ColorType.HSV Isl :!] \
@ o DEDER] |
Ourput =l @ @ 156 (241 (203 [}
Show ehannels #0B4ACE [}
E] Fiat Tuning (7 hidden)
'9 |=} Quitput
w3 a®

Show channels

BE2E0 i
uint® 512x512 - Zoom:0.598

(Inspect)

PEE®

uintd 512x512 - Zoom:0.623

[Inspect|

20808
uintd 512x512 - Zoom:0.789

[Inspect]

For technical readers: invoke_sdx1_turbo uses HuggingFace’s diffuser library to invoke
stable diffusion. See its source code

Visualize, Understand, Innovate

Visualize the Pipeline flow

Example: the application below looks for the most frequent words in a given text file (here with the

text from “"Hamlet”), by applying a pipeline of transformations. It is possible to inspect the input
and outputs of each function.

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_kits/fiat_ai/invoke_sdxl_turbo.py

from fiatlight.demos.string import demo_word_count
demo_word_count.main()

A - i »
text_from il [@ str_lower @ = & remove_non_letters | @) — &) split_words |@ =) &
° b (o] Param @ Param @ Param
aram g . .
-4 I s ¥ Hamlet(... @ s ¥ hamlet (... & ¥ hami lliam shak dited by ...
& text file Select file] hamlet_Shakespeare.ta () [amiet(-) (@) (& amiet (. ([(6 eI R |
@R Output @1 LIEE @ Output o Dutput
o E W o Output - Al R Output = WL Output [l o & @
z ‘ hamlet hamiet by william shakespeare edited by List content @,
Hamlet by william shakespeare = . -
by William Shakespeara edited by barbara a. mowat and paul wers. 00000: hamlet
Edited by Barbara A. Mowat and Paul Wers.,, i 00001: by
with Michael Paston and Rebecca Niles with michael poston and rebecea niles 00002: william
Folger Shakespeare Library (..} folger shakespeare library {..) gg%g 5:’[“?1’5”5
: editer
00005: by
00006: barbara
00007: &
00008:
00009: mowat
42558 mare elements
filter_out_short_words (@ ([sort_words (@] & run_length_encode | @ _| & Most common words [_ 2
[Params @ Params @ Param @ Param
@ words ¥ List of 42568 elements (..) (&) [@ wiords | List of 7221 elements (...} (@) [(W @ input list B/ Listof 7221 elemenis {..) @) (W & words }| List of 2877 elements {...) (@) [N
4 min_length A alpe L) ¥o reverse Default value: False @ iF Output f @ i Output
@ i Cutput @ i Output AL - QB @ Output - Qi
Output - Q & @ Output - Q) @ List content @, List content @,
List content @, List content & 0000: (abatements, 1) 0000: (hamlet, 480}
0000: hamlet 0000: abatements 0 lebimedl 0001; (haratio, 161)
0001: william 00D1: abharred gggi: {ag'l'wa 1;] W 2ol [l)
: ¢ ab : (aboard, 0003: (laertes, 111)
T e T CeeB (Ol o2 TH 0004; (ophelia, §9)
0004: barbara 0004: aboard gggz {asfldgdf“:;m 1 0005: (rosencrantz, 75)
: : : (abroad, 000G: (father, 71)
Ik poin T oo fent 1)
: : : (absalute. 0008: (shauld, 54)
0007: postan 0007 abridgment 0009: (abstinence, 1) 0009: (heaven, 46)
0008: rebecca DO0E: abroad 2867 more slements ol e
0003: falger 0009: absent - e
w7211 more elements 7211 more elements
. .
For technical readers: demo_word_count will simply chain the following string functions:
text_from_file, str_lower, split_words, filter_out_short_words, sort_words,

run_length_encode, sort_word_with_counts . See its source

Examine and understand function internals

fiatlight provides you with powerful tools to visually debug the intermediate states of your function.

Example: the function add_toon_edges below is a complex function that adds a toon effect to an
image. We can visualize the intermediate internal variables of the function (edges, dilated edges),
even if they are not returned by the function.

import fiatlight as fl
from fiatlight.fiat_kits.fiat_image import ImageU8_GRAY, ImageU8_3, image_source
from fiatlight.demos.images.toon_edges import add_toon_edges

f1l.run([image_source, add_toon_edges], app_name="Toon Edges")

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/demos/string/demo_word_count.py

st T i () =T-]

@ Fararan .
F, - —— [#1000, B iR o
e =) ¢ st @@ ase

|E| Aaumme Ay |E| m
g"""' [EhTi] roseirs) (B0 & o B 5l e |

Wo o imags b Defadivabis hone [LA B 110l ey
gLEI = Uk 12_graciant]
i B L1 B

] bosschanaen

I sigme ! 1000 |
aperhare sl () APERTURE_Y () APERTURE S () APERTLRE 7

diain E| bernelsiread gk, s ha prechl repf s e pe UL

L]
wcecs 3] BB O

hiur_sign]
inisraity [amn i]
ol -

Ll
N
(=] () (] 0
@@@=

[aimer |
'E__El Pl Tusiy

daration_canry DUKIEPS

duralin_diisle DURRISE)
daratn blar LETR 2
daration_menge DUAZZS
carey ';J

5
e e e

=

reags_weh_scen) o

HEO-

W AE | BESE - Pacerd) $15

m

(Irsge)
m!ﬂ [T
Chitgil E‘ I!I |I -

|| 5hem chanaen

For technical readers: the function add_toon_edges has an attribute fiat_tuning that
contains the internal variables that will be displayed. See demos/images/toon_edges.py.

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/demos/images/toon_edges.py

Replay and debug function errors

Example: the following application raises an error. However, this error can be replayed, with the
exact same inputs to facilitate the debugging

r

import fiatlight as fl
import math

def float_source(x: float) —> float:
"""A source where the user can specify an input value.'"""
return x
def sin(x: float) —> float:
return math.sin(x)
def log(x: float) —> float:
return math.log(x)

fl.run([float_source, sin, logl, app_name="Replay error")

float_source (@ - I sin —| [log (—] (]
& Param @ Param @ Param

& x 3.300 RN | @ x 33 [® @ x 0.1577 [
ar Output B Qutput ’/' Exception:
Output 3.3 I! a Output 01577 I! @ math domain errar

') @ De bug this exception Q

@ Output

Qutput Error o

For technical readers: the function log will raise an error when x is negative. Once you click
on the “Debug this exception” button, you will be able to debug it:

def log(x: float) -> float: x: -0.00044499999771836145
'""YA function that computes the natural logarithm of its input.

Works only for positive inputs!

4

Full-fledged Applications

Besides being extremely powerful to generate function graphs, Fiatlight's powerful GUI capabilities
can also help you generate sophisticated classic applications.

Applications with advanced GUI

The example below shows an application which:

* reuses the sophisticated GUI provided by Fiatlight in a standard application
e automatically, Save and reloads its state, and GUI presentation options

e provides dockable windows, and a top toolbar

from fiatlight.demos.full_fledged_app import demo_image_processors_app
demo_image_processors_app.main()

Demo Image Processors App View
¥ Params X ¥ Camera
« 3t Q @ Camera

camera_params w 3=
device_number 0
camera_resolutio..p CameraResolution NGA_640_480
brightness)
contrast 0.500

effects

geo_transf

rot_degree ’ Set None

9
flip_h .
flip_v .
color _filter ColorProcessing(lut_0: None, lut_
image_filters
blur_radius 4.597 Seth ¥ Effects
sharpen ® Effects
title_text
params P MemeTextParams(text: , fo

Start Camera

+" Enable idling FPS: 7.1 (Idling)

* For technical readers: See the source code for demo_image_processors_app.py*

Custom Graph Creation

Create custom graphs with a drag-and-drop interface, similar to Scratch, enabling a visual
approach to building workflows.

Example: in the image below, its is possible to add and link function nodes:

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/demos/full_fledged_app/demo_image_processors_app.py

from fiatlight.demos.custom_graph import demo_custom_graph
demo_custom_graph.main()

¥ Functions Graph Image Inspector X ¥ Functions collection

ai images math string

sin @ square € float source

Param Param
1)

sin
a

- o~ @
L0 o033 0..0.0 - B Output Output log
Output 0.03545 a 0.001257 square

0.03546 o @ \ 4
a

o
mul

sub
div
@ - Output canny
0.03672 dilate
oil_paint
image_source
add_toon_edges

overlay_alpha_image

-+ JO -+ IO+ O+ - - - -+ O+ O+ O - - O+

add_meme_text

For technical readers: See the source code for custom_graph.py

Custom Widgets

Define custom ranges for data types, create custom widgets, and leverage special function

attributes like async, live, and ranges for enhanced functionality and performance.

Example: display and play a sound wave with a custom widget

import fiatlight as fl
from fiatlight.fiat_kits.experimental.fiat_audio_simple import sound_wave_from_file
fl.run(sound_wave_from_file, app_name="Sound Wave Player")

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/demos/custom_graph/demo_custom_graph.py

sound_wave_from_file (@) =

aq
Load a sound wave from a file.
@ Param
file_path [Select file] 6 - Libera me.mp3 |g| |E|
@ - Output
Output | :| |g| |g|
Duration: 326.82 s, Sample Rate: 44100 Hz
| 1800 | Volume
Audio Waveform
0.0006
0.0004
0.0002
2K}
=
=
= 0|
E
=y
-0.0002
-0.0004
-0.0006 i i . . :
00:00 00:01 00:02 00:03 00:04 00:05
11770
Time

LG IRC IR JRUIRCIR
01:30.01/05:26.81 | | seconds
For technical readers: sound_wave_from_file is a function that returns a sound wave from a

file, and the widget is a custom widget that displays the sound wave and allows you to play it.
See its source code

Fiatlight is best suited for:

» Rapid Prototyping — Quickly transform ideas into interactive applications with minimal effort.

* Fine-Tuning & Debugging - Inspect intermediate states, visualize function outputs, and
replay errors.

* Education - Teach programming, data science, and algorithm design with interactive tools.

e Data Exploration — Analyze, filter, and visualize complex datasets in real-time.

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_kits/experimental/fiat_audio_simple/sound_wave_player_gui.py

* Al & Machine Learning — Prototype Al models, fine-tune hyperparameters, and visualize
results dynamically.

» Application Development — Prototypes built with Fiatlight can be seamlessly transitioned
into full applications using Dear ImGui. Since Dear ImGui's APl is nearly identical in Python
and C++, porting to C++ is straightforward.

How does Fiatlight compare to other tools? See the full comparison.

Installation

Installation from source

%%bash

git clone https://github.com/pthom/fiatlight.git
cd fiatlight

Optional: create a virtual environment

(you can use whichever method you prefer)
python3 -m venv venv

source venv/bin/activate

pip install -r requirements.txt
pip install -v -e .

Install imgui-bundle (from the main branch)

Fiatlight relies on imgui-bundle, and will depend on the latest version on the main branch (version
1.5.2 from pypi is not sufficient).

To install it, you can

e either clone it and install it from source:

git clone https://github.com/pthom/imgui_bundle.git
cd imgui_bundle

git submodule update ——init —-recursive # (1)

pip install -v . # (2)

pip install opencv-python

pip install pyGLM

« or download pre-compiled recent wheels from here: €) pthom/imgui_bundle

Installation from PyPI

Not available yet

Install optional dependencies

Several requirements files are provided, which you can install via pip install -r

requirements—<name>.txt :

requirements.txt: basic requirements

requirements-ai.txt: requirements for Al demos

requirements-audio.txt: requirements for audio demos

e requirements-dev.txt: requirements for development

Note: for Al demos, you will have to install torch manually, as its installation is dependent on your

system configuration. See https://pytorch.org/get-started/locally/ (you will of course need a GPU to
run the demos)

https://github.com/pthom/imgui_bundle/actions/workflows/wheels.yml
https://pytorch.org/get-started/locally/

Video Tutorials

Tutorials list

Advanced Tutorial

This tutorial walks through the creation of an interactive sorting algorithm visualizer using Fiatlight,

in order to explain more advanced features.

Key Topics:

e Create GUIs for Pydantic models and
functions

e Customize outputs with ImPlot charts

* Use Fiatlight's function graph to build
complex workflows

* Register custom GUIs for types

¢ Run functions asynchronously with real-time
updates

e Build function graphs with GUI and
documentation nodes

e Use Fiatlight GUIs inside a standalone app

GUI for Pydantic Models

Learn how Fiatlight can instantly generate GUIs from Python dataclasses and Pydantic models.

https://share.descript.com/view/oBub1WN28bX
https://share.descript.com/view/oBub1WN28bX

Key Features:

e Customizing widgets with
fiat_attributes
e Automatic validation for user inputs

* Displaying structured data with interactive

components

Fiatlight Architecture

A high-level overview of Fiatlight's internal structure and how it automatically maps functions and

data types to Ul components.

Key Topics:

e Core components: AnyDataWithGui ,

FunctionWithGui , FunctionGraph

e How Fiatlight registers data types to
generate interactive Uls

e Customization callbacks to fine-tune how

data is presented

Full Demo of Fiatlight

Overview:
This video provides a complete walkthrough of Fiatlight, showcasing how it can rapidly generate
Uls for various applications. It is a demo, rather than a tutorial.

https://share.descript.com/view/CxaFQ5T6iq7
https://share.descript.com/view/CxaFQ5T6iq7
https://share.descript.com/view/xkgrDb7Kzzj
https://share.descript.com/view/xkgrDb7Kzzj

Extract insights from a dataframe

A sort algorithms competition

Sources for these videos

Highlights:

* Al-powered meme generator in just 4 lines
of code

¢ Real-time sorting algorithm visualization

¢ Tailored kits for image processing, data

visualization, and audio analysis

e Fine-tuning and debugging with function
state introspection

The sources for these tutorials are available in src/python/fiatlight/demos/tutorials.

~ [fiatlight
v [Dsre

~ [python

~ [2] fiatlight
w [o] tutorials

K

)

>

[=] gui_dataclass_pydantic

(=] image_pipeline_graph_to_app

(5] pydantic_gui

[0 reuse_widget_in_standalone_apps
(2] sort_competition

2 _init__.py

First Steps

Running functions via Fiatlight

Running a single function

It is extremely simple to run and test a function with FiatLight. Below is a function that accepts a

text path as a parameter and outputs the number of words in this text file.

https://github.com/pthom/fiatlight/tree/main/src/python/fiatlight/demos/tutorials
https://share.descript.com/view/tbvYBh3rpRF
https://share.descript.com/view/tbvYBh3rpRF

import fiatlight as fl

Note: TextPath is a synonym for str

Within fiatlight, it is associated with a file dialog widget
from fiatlight.fiat_types import TextPath

def count_words(filename: TextPath) —-> int:
"""Count the number of words in a text file."""
with open(filename, "r") as f:
text = f.read()
return len(text.split())

Run the application
fl.run(count_words, app_name="Count Words")

count_wards o _ E
@ Param
F - = (
& Tlename __Select file| hamlet_Shakespeare.txt ﬂ '
@ Output
Output 32004 LIRS

Note: TextPath is an alias for str, but it is associated with a file dialog widget in Fiatlight.

Composing two functions

Below we create a simple application with two functions: “int_source" and "add":

e "int_source” generates an integer value

e "add" adds two or three integer values.

We specify the range of values for the input parameters of the functions using

e eitherthe fl.add_fiat_attributes function,

e orthe @fl.with_fiat_attributes decorator

Finally, we run the application using the “fl.run” function.

Code

import fiatlight as fl

def int_source(x: int) -> int:

"""int_source is the first function of the application

Since it is not linked to any other function, fiatlight will ask
the user to specify the value of "x".

As such, it serves as a source for the next function.

return x

Customize the GUI for the “int_source’ function. Below, we specify

the range of values for "x" by adding "fiat_attributes"
fl.add_fiat_attributes(int_source, x__range=(0, 100))

This second function adds the values of "a", "b", and "c"
In this case, we add fiat_attributes using a decorator

to specify the range of values for "a" and "b"
@fl.with_fiat_attributes(a__range=(0, 10), b__range=(0, 20))
def add(a: int, b: int = @, c: int | None = None) —> int:

""a3dd is the second function of the application
It adds the values of "a", "b", and "c" and returns the result.

In the interface:

- "a" is linked to the output of int_source and is unspecified

until "x" is specified in int_source.

- "b" is equal to its default value (@). It is shown in gray to

indicate that it is using the default value.

- "c" is an optional, equal to its default value (None). It is also
In order to specify a value for "c", the user must first click on
"Set" button, to specify that this optional has a value, and then

if ¢ is None:

c=20

return a + b + ¢

Run the application, which is a GUI around the composition of the two
Notes:

#
#

— if running a single function, you can use fl.run(your_function)

shown in gr
the
specify the

functions

— the app_name parameter is optional. It defines the name of the settings file,
fl.run([int_source, add]l, app_name="First Example")

int_source @ - B add @ = &

© Param ar Params
4 Unspecified 0 - Unspecified
3 2 = 54 +
@ Output I b Default value: 0 [+]
Output Unspecified ™ c Default value: Mane
o Output
Output Unspecified

The image above shows the default state of the application

e int_source:
o "x"is unspecified
e add:

o "a" is linked to the output of int_source and is unspecified, since int_source can not
be executed (until "x" is specified)

o "b"is equal to its default value (0). It is shown in gray to indicate that it is using the
default value.

o “c"is equal to its default value (None). It is also shown in gray.

Video Tutorial of the available controls

The video below shows how to interact with the widgets in a function node

Save [Load user settings

Automatic user settings saving

Upon exit, Fiatlight automatically saves the user’s settings in a folder named fiat_settings inthe
current directory.

The settings are named after the app_name param passed to “fl.run (if app_name is not set, the

settings file will use the name of the main application module)

~ [fiat_settings

First_Example.fiat_user.json
o First_Example.ini

First_Example.node_editor.json
Three files are saved each time the application saves the settings:

e First_Example.fiat_user.json: user settings (values of the parameters of the functions)
e First_Example.node_editor.json: settings for the node editor (positions of the nodes)

e First_Example.ini: settings for Dear ImGui (since and positions of the window)
Manually save the user settings

When you manually save the user inputs by clicking on the menu “File / Save user settings” the
user settings are saved in a file named "“xxx.fiat_user.json” where "xxx" is the file name you
selected.

Manual

Begin with the First steps section to learn how to wrap functions and dataclasses and run them via
Fiatlight.

Then, explore the following sections.

Introductory topics:

e Add types to signatures so that Fiatlight can generate a GUI for your functions

e Use fiatlight command line tool to list all supported types and their possible GUI customization

options

e Customize widgets using fiat_attributes

e Fully customize any parameter’s GUI by writing it by hand

e Add GUI only nodes to your functions graph (i.e. nodes that do not have a function associated
with them)

e Run functions asynchronously

e Create GUI for structured data, i.e pydantic models and dataclasses

Advanced topics:

e Validate inputs in the GUI

e Reuse Fiatlight widgets in your own apps, not only in Fiatlight's functions graphs.

e Fully customize functions GUI subclassing FunctionWithGui

e Fine-tune functions by viewing their internal status. Debug and replay exceptions.

e Create complex functions graph

e Create and register custom widgets for specific types

Domain-specific topics:
Explore fiat_kits, collections of pre-built widgets for specific domains, such as:

« fiat_image for image processing
e fiat_matplotlib for plotting with Matplotlib

e fiat_dataframe: a widget to display explore pandas dataframes

TODO: manual_reuse_widgets

Wrapping Functions

In this tutorial, we will see how to wrap functions in order to make them compatible with Fiatlight.

Most of the time, functions are wrapped automatically. In the example below, the function

times_two is wrapped automatically by Fiatlight into a FunctionWithGui object:

import fiatlight as fl
def times_two(x: int) —> int:
return x x 2
fl.run(times_two, app_name="Times two") # the function will be wrapped automatical

times_two —| 5
(0] Param
F ¥ 3 _ - @ .
e Output
Output [B v

In order to be wrapped automatically, a function must have a typed signature (see Typed
signatures).

FunctionWithGui is one of the core classes of FiatLight: it wraps a function with a GUI that

presents its inputs and outputs.

» Documentation: See its AP for detailed information.

¢ Source code: View its full code online.

Typed Signatures

Importance of Typed Signatures

To automatically create a GUI for function parameters, Fiatlight requires type information for both
the parameters and the return value of the functions. This is achieved using type hints in the

function signature.

For example, an untyped function signature looks like this:

def foo(a, b):
return a + b

In contrast, a typed version is:

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_core/function_with_gui.py

def foo(a: int, b: float) -> float:
return a + b

More information about type hints can be found in PEP 484. Type hints specify the type of a
variable in Python. They are not mandatory but are a good practice, as they help catch bugs
early in the development process.

Typed vs Untyped Functions GUI

In the example below, math.sin and math.cos are unfortunately not typed. my_cos is a wrapper
around math.cos thatincludes type information.

Code

https://www.python.org/dev/peps/pep-0484/

import math
import fiatlight as fl

def float_source(x: float) -> float:
""MA float source, where the user can specify the value of x."""
return x

def my_cos(x: float) —> float:
"""A wrapper around math.cos that adds types,
so that Fiatlight can infer the widgets in the GUI."""
return math.cos(x)

We create a graph of functions, to which we will add functions manually
graph = fl.FunctionsGraph()

Add a node that will run math.cos: since this function has no type information,
Fiatlight *xwill notx* be able to infer the widgets in the GUI)
graph.add_function(math.cos)

Add a node that will run my_cos: since this function has type information,
Fiatlight skwillx*x be able to infer the widgets in the GUI
graph.add_function(my_cos)

Add a function composition that will transfer the output of float_source to math.
(in this case, math.sin will work correctly, since it only has to display the num
and does not require an edition widget)
graph.add_function_composition([float_source, math.sin])

Run the graph
fl.run(graph, app_name="Typed Signatures")

COs l J

|6 Param
0 Unspecified |€
|§ Output
Output Unspecified k°\| Yo
== sin |§|
float_source)
= Param
o4 Param @ «x '»| 0.7000000476837158 (@) (B
& x 0.700 SRR pp— ot =T |
= I @8 @ 3 Output
& Output ——) owput 9] Q
Output 0.7 o ® 0.6442177237082078
s p—
my_cos L)
|@| Param
45 ETE SN
|6| :_: Output
Output 0.4107 LIRS

\

Visual Output: The image above shows the result of running the above code. Notice the
differences in GUI behavior for typed vs untyped functions.

Key Points:

e Since cos is untyped, it is impossible to enter a value for its input parameter.

e The function sin , however, works correctly in the graph since it receives an input from
float_source and does not require an edition widget.

Wrapping Functions

Creating a wrapper is often extremely simple and necessary when dealing with untyped functions.
Wrapping a function allows you to add type information, making it compatible with Fiatlight's GUI
capabilities. Let's see how to wrap the math.cos function.

Why Create a Wrapper?

The math.cos function from Python's standard library does not have type annotations. Without
these annotations, Fiatlight cannot automatically create a GUI for it. By creating a wrapper, we add

the necessary type information.
Example: Wrapping math.cos

Below, we create a simple wrapper for math.cos that includes type annotations. This allows
Fiatlight to generate a GUI for the function.

4

import math
import fiatlight as fl

Original function without type annotations
def my_cos(x: float) —> float:
"""A wrapper around math.cos that adds types, so that Fiatlight can infer the wid

We added:
* a type annotations for its parameter (" x: float’)
* and for its return value ('—-> float’)

return math.cos(x)

Run the wrapped function with Fiatlight
fl.run(my_cos, app_name="Wrapped Cosine Function")

my_cos o
aa

A wrapper around math.cos that adds types, so that
Fiatlight can infer the widgets in the GUI:

We added:

® 3 type annotations for its parameter (x: float)
and for its return value (-> float)

o} Param

7 x 0.200 @@=
@3 Output

Output 0.9801 (LR

When running the above code, Fiatlight generates a GUI that allows you to input a float value for x

and see the result of math.cos(x) .

As an additional benefit, the documentation you wrote in the wrapper is visible in the function

node!

Registered Types

Introduction

Fiatlight maintains a central registry that links data types (e.g., primitive types or custom data
types) with GUI types. This registry allows Fiatlight to automatically create GUIs for functions based
on their type annotations.

For more information:

* Gui Registry: See the documentation for detailed information

e GUI Types: The GUI Types are all descendant of AnyDataWithGui , which is a generic type

that can be used to create custom widgets for your data types. See its API.

Using registered types

Registered types provide dedicated widgets, enabling automatic GUI creation for function

parameters and outputs.

Tip: use the command fiatlight types in aterminal (or console) to list the registered types
and their associated widgets. See "“Fiatlight command line utility” for more information.

Below is an extract of the output of the fiatlight types command:

> fiatlight types

| Data Type | Gui Type

+ +

| int | IntWithGui

| | A highly customizable int \
| float | FloatWithGui

| | A highly customizable floa
| str | StrWithGui

| | A Gui for a string with re
| | multiline editing.

| bool | BoolWithGui

| | A bool widget. Can use a cl
| ColorRgb ColorRgbWithGui

synonym for tuplel[int, int, int] describing an
RGB color, with values in [0, 255] (NewType)

A nice color picker for RGI

Example with Matplotlib Figures

Let's look at an example using TextPath and matplotlib.figure.Figure , which are registered

types in Fiatlight:

fl.fiat_types.TextPath is an alias for str, but it is registered to be displayed with a file

selection dialog.

matplotlib.figure.Figure is registered to be displayed as a plot in the GUI

import fiatlight as fl
import matplotlib.figure
import matplotlib.pyplot as plt

def words_length_histogram(text_file: fl.fiat_types.TextPath) —> matplotlib.figure.
"Create a histogram of the lengths of words in a text file."
with open(text_file) as f:
text = f.read()
words = text.split()
lengths = [len(word) for word in words]
fig, ax = plt.subplots()
ax.hist(lengths, bins=range(0, 20))
ax.set_title("Word Length Histogram")
ax.set_xlabel("Word Length")
ax.set_ylabel("Frequency")
return fig

fl.run(words_length_histogram, app_name="Registered types")

words_length_histogram 0

[@] Param

& text file :Select flle: hamlet_Shakespeare.tst |’ -

[@] |E Output

Output - Q) ®
a

Word Length Histogram

Frequency

2000

1000 -

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Word Length

Controlling Function Execution

By default, the function will be called only when one of its inputs has changed (either because the
user entered a new value, or because an input is connected to another function that has changed).

You can control the behavior of the function by setting attributes on the function object.

e invoke_async (default=False): if set to True, the function will be called asynchronously
* invoke_manually (default=False): if set to True, the function will be called only if the user

clicks on the "invoke" button

e invoke_always_dirty (default=False): if set to True, the function output will always be
considered out of date. Depending on the value of invoke_manually :

o if “invoke_manually” is True, the “Refresh needed"” label will be displayed

o if "invoke_manually” is False, the function will be called at each frame

Note: a “live” function is thus a function with invoke_manually=False and

invoke_always_dirty=True

Configuring “Live" functions

Example: a live function that display a camera image

4

import fiatlight as fl
from fiatlight.fiat_kits.fiat_image import ImageU8_3

import cv2 # we use OpenCV to capture the camera image (pip install opencv-python)
cap = cv2.VideoCapture(0) # you will need a camera!

def get_camera_image() —> ImageU8_3 | None:
ret, frame = cap.read()
return ImageU8_3(frame) if ret else None

Set flags to make this a live function (called automatically at each frame)
fl.add_fiat_attributes(get_camera_image, invoke_always_dirty=True)

fl.run(get_camera_image, app_name="Live camera image")

get_camera_image

R

@ ir Output
Output v Q
Show channels

CV_8UC3 1920x1080 - Zoom:0.104

Inspect

Using Async Functions

Example: an async function

When your function is slow, you can set the invoke_async flag to True. In the example below, the

yellow spinner indicates that the function is running, while keeping the GUI responsive.

r

import fiatlight as fl
import time
def slow_function() —> int:
time.sleep(5)
return 42

fl.add_fiat_attributes(slow_function, invoke_async=True)
fl.run(slow_function, app_name="Async function")

Note:
You can also use the "@fl.with_fiat_attributes” decorator to set the flags direct

@fl.with_fiat_attributes(invoke_async=True)
def slow_function() —> int:
#

slow_function

@ Output
Qutput Unspecified Yo

“Stoppable” async Functions

In the case of async function, you may also set:

e invoke_async_stoppable (default=False): if true a GUI button will be displayed to stop the

async function while it is running.

In this case, you will need to check the flag invoke_async_shall_stop in your function to know if

the function should stop.

Example:

def my_async_function():

... # some initialization
while True: # inner loop of the function processing (can be any form of loop)
... # some processing

if hasattr(my_async_function, "invoke_async_shall_stop") and my_async_funct
my_async_function. invoke_async_shall_stop = False # reset the flag
break

... # continue the function processing

Manual Invocation Example

Example: a function that needs to be called manually

If you set the invoke_manually flag to True, the function will be called only when the user clicks
the "invoke” button (indicated by a “recycle” icon). If the inputs have changed, a "Refresh needed”
label will be displayed.

r

import fiatlight as f1l
def my_function(a: int, b: float) —> float:
return a + b

fl.add_fiat_attributes(my_function, invoke_manually=True)
fl.run(my_function, app_name="Manual invocation")

my_function
== Params
3 SN
b 0.200 -+ @ 2
@ Output
=~ M\ Refresh needed!
Qutput Unspecified

Handwriting the GUI

Using Edit and Present Callbacks

You can also customize the GUI for a parameter or output by setting custom callbacks function,

namely the "edit"” and “present” callbacks.

In this case, you will first wrap the functionina FunctionWithGui object, and then set the

callbacks for the parameter or output.

import fiatlight as fl

def my_function(a: int) —> float:
return a * 4

my_function_gui = fl.FunctionWithGui(my_function)

A callback to edit the parameter. Receive the current value, and return a tuple (
my_function_gui.input("a").callbacks.edit = ...

A callback to present the output. Receive the current value, and return None
my_function_gui.output().callbacks.present = ...

For more information, see:

e AnyDataWithGui: See the API for detailed information.
» AnyDataWithGuiCallbacks: See the API for detailed information.

Example: Custom Callbacks

In this example, we define custom edit and present callbacks for the function fahrenheit_to_celsius.
The resulting GUI allows the user to input a temperature in Fahrenheit using a custom slider and
see the converted temperature in Celsius with a color-coded note indicating whether it is cold,

warm, or hot.

import fiatlight as fl
from imgui_bundle import imgui, hello_imgui, ImVec4

def fahrenheit_to_celsius(fahrenheit: float = 0) —> float:
return (fahrenheit - 32) x5 / 9

This will be our edit callback: it accepts a float and returns a tuple (bool, flo
where the first element is True if the value has changed, and the second element
def edit_temperature(fahrenheit: float) -> tuplel[bool, float]:
imgui.text("This is our custom edit callback")
Set the width of the slider field to 10 em units (using em units is a good pr
imgui.set_next_item_width(hello_imgui.em_size(10))
changed, new_value = imgui.slider_float("Fahrenheit", fahrenheit, -100, 200)
return changed, new_value

This will be our present callback: it accepts a float and returns None
def present_temperature(celsius: float) —> None:
imgui.text("This is our custom present callback")
note = "Cold" if celsius < 20 else "Hot" if celsius > 40 else "Warm"
color = ImVec4(0, 0.4, 1, 1) if celsius < 20 else ImVec4(1, 0.4, 0, 1) if celsi
imgui.text_colored(color, f"{celsius:.2f} °C ({note})")

fahrenheit_to_celsius_gui = fl.FunctionWithGui(fahrenheit_to_celsius)
fahrenheit_to_celsius_gui.output().callbacks.present = present_temperature
fahrenheit_to_celsius_gui.input("fahrenheit").callbacks.edit = edit_temperature

fl.run(fahrenheit_to_celsius_gui, app_name="Custom callbacks")

fahrenheit_to_celsius

@ Param
& fahrenheit This is our custom edit callback a8
128.413 Fahrenheit
@ ir Output
Output This is our custom present callback & ¥
53.56 °C (Hot)

Customizing Widgets with Fiat Attributes

Introduction

Fiat attributes allow you to customize various aspects of the GUI for function nodes, dataclasses,
and pydantic models. They provide a powerful way to modify the appearance and behavior of

function parameters and outputs, adjust the GUI for dataclasses, control how function nodes run
(e.g., asynchronously or manually), set labels and tooltips for function nodes and parameters, and
validate function parameters and dataclass fields.

There are two main ways to add attributes to a function:
e using a decorator: @fl.with_fiat_attributes on top of the function definition

e using the fl.add_fiat_attributes function elsewhere in the code

For more details on customizing dataclasses and pydantic models, see the GUI Registry
documentation.

Why Customize Widgets?

As an example, let's consider the function “my_asin” below: if you run this function with run() , the
GUI will allow the user to enter any float value for x. This lets the user enter values that may not be
valid for the function.

import fiatlight as fl

Ideally, we would like to restrict the range of x to [-1, 1]
def my_asin(x: float = 0.5) -> float:

import math

return math.asin(x)

fl.run(my_asin, app_name="No range restriction")

my_asin 3
@ Param
7 x 20 (EE ® @
Exception:
math domain error
@ Debug this exception @,
& Output

Cutput Error Yo

Adding Attributes with a Decorator

It is possible to customize the GUI for parameters using function attributes: below, we set the range

for x. As a consequence it will be displayed with a slider widget with a range from -1 to 1.

;

import fiatlight as fl

Use the “with_fiat_attributes’ decorator to set custom fiat attributes for the fu
Here, we set the range of the x parameter.
Important: note the double underscore ("_") after the parameter name!
@fl.with_fiat_attributes(x__range=(-1, 1))
def my_asin(x: float = 0.5) -> float:

import math

return math.asin(x)

fl.run(my_asin, app_name="Range restriction")

x-\.

my_asin -] E,'
@ Param
7 x 1.000 LI -]
a) Output
Output 1.571 ™

L

Adding Attributes Manually

If you do not wish or cannot modify the function definition, you can use the add_fiat_attributes
function to add attributes to the function. This way, your function stays unmodified, and you can

specify the attributes only when creating its GUI.

import fiatlight as fl

def my_asin(x: float = 0.5) -> float:
import math
return math.asin(x)

Important: note the double underscore ("_") after the parameter name!
fl.add_fiat_attributes(my_asin, x__range=(-1, 1))
fl.run(my_asin, app_name="Range restriction")

my_asin

@ Param

| & x 1.000 e
@ it Output

:\Dutp.ut 1.571 L) im;

Listing Available Fiat Attributes

To customize the GUI for function parameters or outputs, you can list the available fiat attributes for

a specific type using the Fiatlight command line utility.

Use the command fiatlight gui int in a terminal (or console) to list available fiat attributes for the int
type. For other types, replace int with the type you are interested in.

For more information, see “Fiatlight command line utility".

Below is an extract of the output of fiatlight gui int:

GUI type: int

A highly customizable int widget.
Available fiat attributes for IntWithGui:

| Name | Type | Default | Explanation

+ + + +

| range | tuplelint, int] | (0, 10) | Range of the integer

| edit_type | str | input | Type of the edit widget. Possil
| | | | slider, input, drag, knob,

| | | | slider_and_minus_plus

| format | str | %d | Format string for the value

I | - | |

Available fiat attributes for AnyDataWithGui Generic attributes:

| Name | Type | Default | Explanation

+ + + +

| label | str | | A label for the parameter. If empty,
| | | | function parameter name is used

| validator | object | None | Function to validate a parameter vali
| | | | raise a ValueError if invalid, or re
| | | | value (possibly modified)

| |

Example: Fiat Attributes in Action

In the example below, we customize the GUI for the function interactive_histogram by setting

fiat attributes for the number of data points, the number of bars, the mean, and the standard
deviation.

import fiatlight
import matplotlib; matplotlib.use('Agg') # Required to display the figure in the G
from matplotlib.figure import Figure

@fiatlight.with_fiat_attributes(
Label displayed as the title of the function node
label="Interactive histogram",

Edit the number of data points with a logarithmic slider

Note: by default, you can ctrl+click on a slider to input a value directly,
this is disabled here with nb_data__slider_no_input
nb_data__label="Nb data",

nb_data__edit_type="slider",

nb_data__range=(100, 1_000_000),

nb_data__slider_logarithmic=True,

nb_data__slider_no_input=True,

Edit the number of bars with a knob
n_bars__label="Number of bars",
n_bars__edit_type="drag",
n_bars__range=(1, 300),

Edit the average with a slider for a float value with any range

(the slider range will adapt interactively, when dragging far to the left or
average__label="Mean",

average__edit_type="slider_float_any_range",

average__range=(-5, 5),

Edit the standard deviation with a drag
sigma__label="Std deviation",
sigma__edit_type="knob",
sigma__range=(0.1, 5),

)
def interactive_histogram(
nb_data: int = 4000, n_bars: int = 50, sigma: float = 1, average: float = 500
) —> Figure:
"''Generate an interactive histogram with adjustable number of bars, mean, and
import numpy as np
import matplotlib.pyplot as plt

data np.random.normal(loc=average, scale=sigma, size=nb_data)
bins = np.linspace(np.min(data), np.max(data), n_bars)

fig, ax = plt.subplots()

ax.hist(data, bins=bins, color="blue", alpha=0.7)

return fig

fiatlight.run(interactive_histogram, app_name="Fiat attributes")

Interactive histogram E] ;] E]

[_Q:_J [ﬁ] Params
MNbdata 23&' |E] E]
& Number of bars [67) [EJ Jﬁ]
& std deviation g B
i aa
12,50 |
& Mean $/0| 4496 [@..1000) |5 L]
@ Qutput
Output [q [ﬁ [E\ Ty
a8

1600 4

1400 +

1200 -+

1000 4

800 1

600 +

400 A

200 4

0- . .
440 444 450 455 460 465

Gui Registry
fiatlight.fiat_togui is the central module that is able to associate a GUI with a type.
It uses sophisticated mechanisms to inspect the type of function parameters and return values.

It handles a registry of types and their associated GUIs, to which you can add your own types, by
calling fiatlight.register_type(DataType, DataTypeWithGui) , where DataType is the type
you want to register, and DataTypeWithGui is the class that will handle the GUI for this type.

DataTypeWithGui must inherit from AnyDataWithGui and implement the necessary callbacks.

Explore the registry

The fiatlight command line utility is a powerful tool that allows you to explore the available
widgets and types in Fiatlight. It can be used to list the available types, to print the GUI info for a

given type, and to run a GUI demo for a given type.

Here is the help message for the fiatlight command line utility:

%%bash
fiatlight —-help

INFO: Showing help with the command 'fiatlight —-- ——help'.

NAME
fiatlight

SYNOPSIS
fiatlight COMMAND

COMMANDS
COMMAND is one of the following:

types
List registered types, with a possible query to filter them. Add an optional

gui
Print the info and fiat attributes available for a given type. Add the datat

fn_attrs
Display the available fiat attributes for a function

See the page Tutorials/fiatlight command line utility for more information.

Primitive types

The primitive types int, float, str, bool are registered by default.

Basic example

import fiatlight as fl
def foo(a: float, b: float = 3.0, times_two: bool = False) —> float:
return (a + b) x (2 if times_two else 1)

Run an app that displays the GUI for the function

where the user can input the values of the parameters
(or use the default values)

fl.run(foo, app_name="Primitive Basic")

foo = & |
@ Params
7 a 0.300 L -
& b 2,000 [-][+ LI - |
& times_two o h B
o Output
L)

Dutput 6.6

Example with custom GUI options

The GUI for these primitive types is extensively configurable via fiat attributes. Below, we customize
the GUI for the celsius parameter to be a slider ranging from 0 to 100, with a specific format for
displaying the value.

See FunctionWithGui for a comprehensive list of all the available attributes (in the “Customizing

parameters GUI" section).

import fiatlight as fl

@fl.with_fiat_attributes(celsius__range=(0, 100), celsius__format="%.1f °C")
def to_fahrenheit(celsius: float) —-> float:
return celsius *x 9 / 5 + 32

fl.run(to_fahrenheit, app_name="Primitive Custom")

to_fahrenheit |=] E

& Param
celsius 3\.0°C a [-]
& Output
Output 102.2 @ ¥

Range limited numeric types

As a convenience, Fiatlight includes those predefined types for which the GUI will take into account

their boundings.

;

from typing import NewType

Float types with specific ranges (bounds included)
Float_0_1 = NewType("Float_0_1", float) # 0 to 1
Float_@0_1._ _doc__ = "synonym for float in [0, 1] (NewType)"

Float__1_1 = NewType("Float__1_1", float) # -1 to 1
Float__1 1. __doc__ = "synonym for float in [-1, 1] (NewType)"

PositiveFloat = NewType('PositiveFloat", float) # Any positive float (strictly gr
PositiveFloat.__doc__ = "synonym for float > @ (strictly greater than @) (NewType)"

Int types with specific ranges (bounds included)
Int_@_255 = NewType("Int_0_255", int) # 0 to 255
Int_0_255.__doc__ = "synonym for int in [0, 255] (NewType)"

File name types

Several file types names are registered by default. They are synonyms for str and are used to

specify file paths. They will be presented with a file dialog in the GUI.

from fiatlight.fiat_notebook import look_at_code
%look_at_python_code fiatlight.fiat_types.file_types

from typing import NewType

FilePath is a synonym of str, but when used as a function parameter,

it will be displayed as a widget where you can select a file.

FilePath = NewType("FilePath", str)

FilePath.__doc__ = "synonym for str, describing a file path (NewType)"

FilePath_Save is a synonym of str, but when used as a function parameter,

it will be displayed as a widget where you can select a file to save to.
FilePath_Save = NewType("FilePath_Save", str)

FilePath_Save.__doc__ = "synonym for str, describing a file path for saving (NewType

With ImagePath, you can select an image file.
ImagePath = NewType('"ImagePath", FilePath)

ImagePath.__doc__ = "synonym for str, describing an image file path (NewType)"
ImagePath_Save = NewType('"ImagePath_Save'", FilePath_Save)
ImagePath_Save.__doc__ = "synonym for str, describing an image file path for saving

With TextPath, you can select a text file.
TextPath = NewType("TextPath", FilePath)

TextPath.__doc__ = "synonym for str, describing a text file path (NewType)"
TextPath_Save = NewType("TextPath_Save'", FilePath_Save)
TextPath_Save.__doc__ = "synonym for str, describing a text file path for saving (Ne

With AudioPath, you can select an audio file.
AudioPath = NewType("AudioPath", FilePath)

AudioPath.__doc__ = "synonym for str, describing an audio file path (NewType)"
AudioPath_Save = NewType("AudioPath_Save'", FilePath_Save)
AudioPath_Save.__doc__ = "synonym for str, describing an audio file path for saving

With VideoPath, you can select a video file.
VideoPath = NewType('"VideoPath", FilePath)

VideoPath.__doc__ = "synonym for str, describing a video file path (NewType)"
VideoPath_Save = NewType("VideoPath_Save'", FilePath_Save)
VideoPath_Save.__doc__ = "synonym for str, describing a video file path for saving |

Color types

Several color types are registered by default.

%look_at_python_code fiatlight.fiat_types.color_types

from typing import NewType
from imgui_bundle import ImVec4

ColorRgb = NewType("ColorRgb", tuplel[int, int, int])
ColorRgb.__doc__ = "synonym for tuplel[int, int, int] describing an RGB color, with \

ColorRgba = NewType("ColorRgba", tuplelint, int, int, int])
ColorRgba.__doc__ = "synonym for tuplel[int, int, int, int] describing an RGBA color,

ColorRgbFloat = NewType("ColorRgbFloat", tuple[float, float, float])
ColorRgbFloat.__doc__ = (
"synonym for tuple[float, float, float] describing an RGB color, with values in

)

ColorRgbaFloat = NewType("ColorRgbaFloat", tuple[float, float, float, float])
ColorRgbaFloat.__doc__ = (

"synonym for tuple[float, float, float, float] describing an RGBA color, with ve
)

def _int255_to_float(value: int) —> float:
return value / 255.0

def _float_to_int255(value: float) —-> int:
return int(value * 255)

def color_rgb_to_color_rgb_float(color_rgb: ColorRgb) —> ColorRgbFloat:
return ColorRgbFloat(tuple(_int255_to_float(value) for value in color_rgb)) # i

def color_rgba_to_color_rgba_float(color_rgba: ColorRgba) —> ColorRgbaFloat:
return ColorRgbaFloat(tuple(_int255_to_float(value) for value in color_rgba)) 4

def color_rgb_float_to_color_rgb(color_rgb_float: ColorRgbFloat) —> ColorRgb:
return ColorRgb(tuple(_float_to_int255(value) for value in color_rgb_float)) #

def color_rgba_float_to_color_rgba(color_rgba_float: ColorRgbaFloat) —> ColorRgba:
return ColorRgba(tuple(_float_to_int255(value) for value in color_rgba_float))

def color_rgb_to_color_rgba(color_rgb: ColorRgb) —> ColorRgba:
return ColorRgba(color_rgb + (255,))

def color_rgb_float_to_color_rgba_float(color_rgb_float: ColorRgbFloat) —> ColorRgb:
return ColorRgbaFloat(color_rgb_float + (1.0,))

def color_rgb_to_imvec4(v: ColorRgb) —> ImVec4:
return ImVec4(v([@] / 255.0, v[1] / 255.0, vI[2] / 255.0, 1.0)

def color_rgba_to_imvec4(v: ColorRgba) —> ImVec4:
return ImVec4(v[0] / 255.0, vI[1] / 255.0, vI[2] / 255.0, vI[3] / 255.0)

def color_rgb_float_to_imvec4(v: ColorRgbFloat) —-> ImVec4:
return ImVec4(v[o]l, vI1], vI[2], 1.0)

def color_rgba_float_to_imvec4(v: ColorRgbaFloat) —> ImVec4:
return ImVec4(v([o]l, vI[1], vI[2], vI3])

Example: using color types in function

import fiatlight as fl
from fiatlight.fiat_types import ColorRgb, ColorRgba

def color_chooser(colorl: ColorRgba, color2: ColorRgb) —> str:
return f"You selected: {colorl=}, {color2=}"

fl.run(color_chooser, app_name="Color Chooser")

color_chooser Q
. Params

©

¢ colorl (R:17 [G: 60(B:223|(A:100 | |8 a
& color2 R:215)(G: 49)(B:216 [} ™ a
DUtPUt - ::D;'?;.Dg: 49, B: 216
Output You selected: color1=(17, 60, (0.843, G'Eﬂ'ﬂm

Optional types

If a type is registered, its optional version is also registered.
Example: using an optional color in a function

(In this example, the user needs to click on “Set” to set a value to the optional color)

import fiatlight as fl
from fiatlight.fiat_types import ColorRgb, ColorRgba

def color_chooser(color: ColorRgb | None = None) —> str:
return f"You selected: {color=}"

fl.run(color_chooser, app_name="0Optional Color")

color_chooser — &
@ Param
7 color Mone [set| (B B
@ Dutput
Output :g:-;?:‘r'f;hid'- ﬂ Yo
Lists

A very basic support is provided for lists. It does not allow to edit the values. However, it can

present a list of values using (all of them will be rendered as string using str() function).

import fiatlight as f1l
from fiatlight.fiat_types import TextPath

def list_words_in_file(filenames: TextPath) —> list[str]:

with open(filenames) as f:
return f.read().split()

fl.run(list_words_in_file, app_name="List Words in File")

)
) K

&

|
=

list_words_in_file

ﬁ] Param
filenames \Select file_| hamlet_Shakespeare.txt ﬁ i
@3 Output
Output E] [E| Yo
00000: Hamlet
00001: by
00002: William
00003: Shakespeare
00004 Edited
00005: by
00006: Barbara
00007 A,
00008: Mowat
00009: and
31994 more elements
Details|

Enum classes

Enum classes are automatically associated to a GUI.

import fiatlight as f1l
from enum import Enum

class Color(Enum):
Red = 1
Green = 2
Blue = 3

def color_chooser(color: Color) —> str:
return f"You selected: {color.namel}"

fl.run(color_chooser, app_name="Enum Color")

color_chooser |;| [E|
@ Param
& color 'Green v @ 8
@ Output

Output You selected: Green [EI Yo

Gui Nodes

Gui Nodes are specialized nodes in Fiatlight, dedicated to functions which do not return values but
instead displaying a user interface using ImGui widgets. Gui Nodes are called at every frame,

ensuring that the GUI is always responsive and up-to-date.
Gui Nodes are particularly useful for:

e Displaying interactive visualizations (plots, etc)
e Creating dashboards

e Providing user controls (e.g., sliders, buttons) that alter global variables

Notes:

e Gui Nodes are not meant to return values

e Your GUI function should be fast. If you need to perform heavy computations, consider
using AnyDataWithGui, where the "on_change” callback can be used to cache heavy
computations.

Example: Visualizing a Heart Curve with a GUI Node

In this example, we demonstrate how to create a GUI node that visualizes a heart curve. The size of

the heart dynamically changes over time to simulate a heartbeat.
Explanation:

1. time_seconds: This function returns the current time in seconds and is set to always be re-
evaluated at every frame.
2. heart_curve: Generates the x and y coordinates of a heart curve that changes size over time to

simulate a heartbeat.

3. gui_curve: A GUI node that visualizes the heart curve using ImPlot. It updates the curve at
every frame to reflect the beating heart.

4. gui_curve is a gui function. So, we wrap it in a GuiNode to display the heart curve with either

GuiNode(gui_curve) or graph.add_gui_node(gui_curve) .

import fiatlight as fl

from imgui_bundle import hello_imgui, implot
import numpy as np

from numpy.typing import ArraylLike

import time

@fl.

def

def

def

with_fiat_attributes(invoke_always_dirty=True)

time_seconds() —> float:

"""Return the current time in seconds.

This function is marked as always dirty, so it will be re-evaluated at every fr

return time.time()

heart_curve(time_: float) —> ArrayLike:

"""Return the x and y coordinates of a heart curve whose size changes over time
to simulate a heart beating.

vals = np.arange(@, np.pi * 2, 0.01)

X0 = np.power(np.sin(vals), 3) *x 16

y® = 13 * np.cos(vals) - 5 % np.cos(2 * vals) - 2 * np.cos(3 * vals) — np.cos(4

Heart pulse rate and time tracking
heart_pulse_rate = 80

phase = time_ x heart_pulse_rate / (np.pi * 2)
k = 0.8 + 0.1 * np.cos(phase)

return np.array([x@ *x k, yo x kl)

gui_curve(xy: ArrayLike) —> None:
"""Display the heart curve with ImPlot

This function is a GUI node that displays the heart curve.

It is called at every frame to update the curve.

if implot.begin_plot("Heart", hello_imgui.em_to_vec2(21, 21)):
implot.setup_axes_limits(-15, 15, -15, 11)
implot.plot_line("", xyl0l, xy[1])
implot.end_plot()

Run the graph
Method 1: Using the run function, and wrapping the gui_curve function in a GuiNod
fl.run([time_seconds, heart_curve, fl.GuiNode(gui_curve)]l, app_name="HeartCurve'")

HHEHRFTRIEHRHR

Method 2: Using a FunctionsGraph

graph = fl.FunctionsGraph()

graph.add_function(time_seconds)

graph.add_function(heart_curve)

graph.add_gui_node(gui_curve) # Add the gui_curve function as a GuiNode
graph.add_link(time_seconds, heart_curve)

graph.add_link(heart_curve, gui_curve)

fl.run(graph, app_name="HeartCurve")

time_seconds | | (&

8Q

Return the current time in seconds. T
his function is marked as always
dirty, so it will be re-evaluated at
every frame.

FIY

EE Output
Output 1.74%e+08 | @

heart_curve [s
8a

Return the x and vy coordinates of a heart curve whose size changes over
time, to simulate a heart beating.

@ Param

@ time 1.741e+09 L)
g3 Output

Output ¥ | [[0.00000000e+00 1.29950699%-05 1.039... Q ﬂ a?

Example: a GUI node with serializable state

When adding a GuiNode, you can pass a serializable data class to store the options of the GUI

gui_curve @

2

Display the heart curve with ImPlot

D&

This function is a GUI node that displays the heart

curve.

Itis called at every frame to update the curve.

Lo
@ xy

Param

»| [[0.00000000e+00 1.
29950699e-05 1.039...

Heart

Q

function. This allows you to save the state of the GUI function and reload it when restarting the

application.

In the example below, we demonstrate how to create a GUI node that multiplies an input value by a

factor. The factor can be adjusted by the user and is stored in a serializable data class. The factor

value is reloaded upon restarting the application.

import fiatlight as fl
from imgui_bundle import imgui
from pydantic import BaseModel

def input_x(x: int) —> int:
"3 function that will be displayed in the function graph, in order to let the
return x

class WhatToMultiply(BaseModel):
"""A serializable data class that will be used to store the options of the GUI
factor: int = 3

WHAT_TO_MULTIPLY = WhatToMultiply()

def gui_x_times_factor(x: int) —> None:
""YMA GUI function that multiplies the input by a serializable factor.
It will be added via graph.add_gui_node(gui_x_times_factor, gui_serializable_da
It uses a serializable data class to store its options, which will be reloaded
_, WHAT_TO_MULTIPLY.factor = imgui.input_int("Factor", WHAT_TO_MULTIPLY.factor)
imgui.text(f"Multiply by a factor: x s {WHAT_TO_MULTIPLY.factor} ={x * WHAT_TO_

Run the graph
fl.run([input_x, fl.GuiNode(gqui_x_times_factor, gui_serializable_data=WHAT_TO_MULTI

i - A e
input_x @ - & gui_x_times_factor (@ _| [4
@ Param @ Param
/‘ =
£ A 2 i) G . @} | 2 @
== Output f ®
Output 2 o @ 'Q\'
7 + | Factor

Multiply by a factor: x * 7 =14

Fiatlight command line utility

The fiatlight command line utility is a powerful tool that allows you to explore the available
widgets and types in Fiatlight. It can be used to list the available types, to print the GUI info for a
given type, and to run a GUI demo for a given type.

Here is the help message for the fiatlight command line utility (ignore the %%bash magic
command, it is used to run bash commands in Jupyter notebooks):

%%bash
fiatlight —-help

INFO: Showing help with the command 'fiatlight —— ——help'.

NAME
fiatlight

SYNOPSIS
fiatlight COMMAND

COMMANDS
COMMAND is one of the following:

types
List registered types, with a possible query to filter them. Add an optional

gui
Print the GUI info for a given type. Add the GUI type name as an argument (i

List registered types

The types command lists the registered types in Fiatlight. You can filter the types by adding an

optional query.
In the example below, we will run the fiatlight types str command to list all the types that

contain the string “str".

%%bash
fiatlight types str

synonym for str, describing a
saving (NewType)

file path for

| Data Type | Gui Type
+ +
| str | fiatlight.fiat_togui.str_witl
| | A Gui for a string with re
| | multiline editing.
| fiatlight.fiat_types.fiat_number_types.PositiveFlo | fiatlight.fiat_togqui.primiti:
| at | A highly customizable floa
| synonym for float > @ (strictly greater than @) |
| (NewType) |
| fiatlight.fiat_types.file_types.FilePath | fiatlight.fiat_togui.file_ty)
| synonym for str, describing a file path | A Gui that enable to selec
| (NewType) |
| fiatlight.fiat_types.file_types.TextPath | fiatlight.fiat_togui.file_ty)
| synonym for str, describing a text file path | A Gui that enable to selec
| (NewType) |
| fiatlight.fiat_types.file_types.ImagePath | fiatlight.fiat_togui.file_ty
| synonym for str, describing an image file path | A Gui that enable to selec
| (NewType) |
| fiatlight.fiat_types.file_types.AudioPath | fiatlight.fiat_togui.file_ty
| synonym for str, describing an audio file path | A Gui that enable to selec
| (NewType) |
fiatlight.fiat_types.file_types.VideoPath fiatlight.fiat_togqui.file_ty
synonym for str, describing a video file path A Gui that enable to selec
(NewType)
fiatlight.fiat_types.file_types.FilePath_Save fiatlight.fiat_toqui.file_ty

A Gui that enable to selec
dialog.

fiatlight.fiat_types.file_types.TextPath_Save
synonym for str, describing a text file path for
saving (NewType)

fiatlight.fiat_togqui.file_ty
A Gui that enable to selec
file dialog.

— — — -). — — — _). — — — i — — —

fiatlight.fiat_types.file_types.ImagePath_Save
synonym for str, describing an image file path
for saving (NewType)

T
Il
T

4
T

4
T
1

fiatlight.fiat_togqui.file_ty
A Gui that enable to selec
file dialog.

fiatlight.fiat_types.file_types.AudioPath_Save
synonym for str, describing an audio file path
for saving (NewType)

fiatlight.fiat_togqui.file_ty
A Gui that enable to selec
file dialog.

fiatlight.fiat_types.file_types.VideoPath_Save
synonym for str, describing a video file path
for saving (NewType)

fiatlight.fiat_toqui.file_ty
A Gui that enable to selec
file dialog.

— _). — — — i — — —

fiatlight.fiat_kits.fiat_ai.prompt.Prompt

T
Il
T

4
T

fiatlight.fiat_kits.fiat_ai.|

| synonym for a string used as a prompt, used for | A Gui to edit a prompt, wi
| AI text and image generation models (NewType) | in a popup.

4
T

4
T

Notes:

e If you do notinclude the str argument, all the types will be printed.

Print the GUI info for a given type

The gui_info command prints the GUI info for a given type. You can specify the GUI type name or
the data type name as an argument. If you do not provide a type name, all the GUI widget names

will be printed.

Example: Print the GUI info for StrWithGui

In the example below, we will run the fiatlight gui_info StrWithGui command to print the GUI

info for the StrwithGui widget.

%%bash
fiatlight gui str

GUI type: str

A Gui for a string with resizable input text, with a popup for multiline editing.

Available custom attributes for StrWithGui:

presented as a mult

| Name | Type | Default | Explanation

+ + + +

| width_em | float | 15.0 | Initial width of th
| | | | (in em unit). Can b
| | | | True

| size_multiline_em | tuple[float, float] | (60.0, 15.0) | Initial size of the
| | | | em unit)

| hint | str | | Hint text for the il
| allow_multiline_edit | bool | False | Whether the user ca
| | | | multiline string (wl
| resizable | bool | True | Whether the single

| wrap_multiline | bool | False | Whether the text is
| | | | a multiline string

| wrap_multiline_width | int | 8@ | width at which the

I I I I

Available custom attributes for AnyDataWithGui Generic attributes:

Default

| Name | Type | | Explanation

+ + + +

| | | | *xGeneric attributessx

| validate_value | object | None | Function to validate a paramete
| | | | return DataValidationResult.ok(

| label | str | | A label for the parameter. If e
| | | | function parameter name is used

| tooltip | str | | An optional tooltip to be displ:
| label_color | ImVecd4 | ImVec4(0.000000, | The color of the label (will us

| | | 0.000000, 0.000000, | text color if not provided)

| | | 1.000000) |

Code to test this GUI type:

" “python

import typing
import fiatlight

@fiatlight.with_fiat_attributes(
str_param__width_em = 15.0,
str_param__size_multiline_em = (60.0, 15.0),
str_param__hint = "",
str_param__allow_multiline_edit = False,
str_param__resizable = True,
str_param__wrap_multiline = False,
str_param__wrap_multiline_width = 80,

Generic attributes

str_param__validate_value = None,

str_param__label = "",

str_param__tooltip = "",

str_param__label_color = ImVec4(0.000000, 0.000000, 0.000000, 1.000000))
def f(str_param: str) —> str:

return str_param

fiatlight.run(f)

Example: Print the GUI info for ImageWithGui

%%bash
fiatlight gui ImageWithGui

GUI type: ImageWithGui

A highly sophisticated GUI for displaying and analysing images. Zoom/Pan, show chi

Available custom attributes for fiat_image.ImageWithGui:

| Name | Type | Default | Explanation

+ + + +

| | | | *xMain attributs
| only_display | bool | False | Only display th
| | | | zoom, no pan

| image_display_size | tuplelint, int] | (200, @) | Initial size of
| | | | height). One of
| zoom_key | str | z | Key to zoom in

| | | | same zoom key w.
| is_color_order_bgr | bool | True | Color order is |
| | | | uses BGR by def:
| can_resize | bool | True | Can resize the

| | | | the bottom righ-
| | | | **xChannelsxx

| show_channels | bool | False | Show channels

| channel_layout_vertically | bool | False | Layout channels
| | | | **xZoom & Panxx

| pan_with_mouse | bool | True | Pan with mouse

| zoom_with_mouse_wheel | bool | True | Zoom with mouse
| | | | *xInfo displaye
| show_school_paper_background | bool | True | Show school papt
| | | | is unzoomed

| show_alpha_channel_checkerboard | bool | True | Show alpha chani
| show_grid | bool | True | Show grid with -
| draw_values_on_zoomed_pixels | bool | True | Draw values on |
| | | | *xInfo displaye
| show_image_info | bool | True | Show image info

| show_pixel_info | bool | True | Show pixel info
| | | | position under -
| | | | *xControl buttol
| show_zoom_buttons | bool | True | Show zoom butto
| show_options_panel | bool | True | Show options pa
| show_options_button | bool | True | Show options bu
| show_inspect_button | bool | True | Show the inspec
| | | | a large version
| | | | Inspector

Available custom attributes for AnyDataWithGui Generic attributes:

| Name | Type | Default | Explanation

+ + + +

| | | | *k«Generic attributesxx

| validate_value | object | None | Function to validate a paramete
| | | | return DataValidationResult.ok(

| label | str | | A label for the parameter. If e
| | | | function parameter name is used

| tooltip | str | | An optional tooltip to be displ:
| label_color | ImVecd4 | ImVec4(0.000000, | The color of the label (will us

| | | 0.000000, 0.000000, | text color if not provided)

| | | 1.000000) |

Code to test this GUI type:

" python
import typing
import fiatlight

@fiatlight.with_fiat_attributes(
Main attributes for the image viewer
union_param__only_display = False,
union_param__image_display_size = (200, 0),
union_param__zoom_key = "z",
union_param__is_color_order_bgr = True,
union_param__can_resize = True,
Channels
union_param__show_channels = False,
union_param__channel_layout_vertically = False,
Zoom & Pan

union_param__pan_with_mouse = True,

union_param__zoom_with_mouse_wheel = True,

Info displayed on image

union_param__show_school_paper_background = True,

union_param__show_alpha_channel_checkerboard = True,

union_param__show_grid = True,

union_param__draw_values_on_zoomed_pixels = True,

Info displayed under the image

union_param__show_image_info = True,

union_param__show_pixel_info = True,

Control buttons under the image

union_param__show_zoom_buttons = True,

union_param__show_options_panel = True,

union_param__show_options_button = True,

union_param__show_inspect_button = True,

Generic attributes

union_param__validate_value = None,

union_param__label = "",

union_param__tooltip = "",

union_param__label_color = ImVec4(0.000000, 0.000000, 0.000000, 1.000000))
def f(union_param: typing.Union[fiatlight.fiat_kits.fiat_image.image_types.ImageU8_:

return union_param

fiatlight.run(f)

Annex: list of registered types

By running the fiatlight types command, you can list all the registered types in Fiatlight. Here
is a list of the available types:

%%bash
fiatlight types

| Data Type | Gui Type
+ +
| fiatlight.fiat_types.fiat_number_types.Float_0_1 | fiatlight.fiat_togui.primiti
| synonym for float in [0, 1] (NewType) | A highly customizable floa
| fiatlight.fiat_types.fiat_number_types.Float__1_1 | fiatlight.fiat_togui.primiti
| synonym for float in [-1, 1] (NewType) | A highly customizable floa
| fiatlight.fiat_types.fiat_number_types.Int_0_255 | fiatlight.fiat_togui.primiti
| synonym for int in [0, 255] (NewType) | A highly customizable int \
| int | fiatlight.fiat_togui.primiti
| | A highly customizable int \
| float | fiatlight.fiat_togui.primiti
| | A highly customizable floa
str fiatlight.fiat_toqui.str_witl
A Gui for a string with re
multiline editing.
bool fiatlight.fiat_toqui.primiti

A bool widget. Can use a cl

— — — _).__ -, ———

fiatlight.fiat_types.color_types.ColorRgb
synonym for tuplel[int, int, int] describing an
RGB color, with values in [0, 255] (NewType)

— — — _).__ -, ———

fiatlight.fiat_togqui.primiti
A nice color picker for RGI

fiatlight.fiat_types.color_types.ColorRgba
synonym for tuplel[int, int, int, int] describing
an RGBA color, with values in [0, 255] (NewType)

fiatlight.fiat_togqui.primiti
A nice color picker for RGI

fiatlight.fiat_types.color_types.ColorRgbFloat
synonym for tuple[float, float, float]
describing an RGB color, with values in [0, 1]

(NewType)

fiatlight.fiat_togqui.primiti
A nice color picker for RGI

fiatlight.fiat_types.color_types.ColorRgbhaFloat
synonym for tuple[float, float, float, float]
describing an RGBA color, with values in [0, 1]

(NewType)

fiatlight.fiat_toqui.primiti
A nice color picker for RGI

fiatlight.fiat_types.fiat_number_types.PositiveFlo

at
synonym for float >
(NewType)

@ (strictly greater than 0)

fiatlight.fiat_toqui.primiti
A highly customizable floa

(dataclass) fiatlight.
s.ExampleDataclass
ExampleDataclass(x:

fiat_togui.dataclass_example

int = @, y: str = 'Hello"')

fiatlight.fiat_togui.datacla
A sophisticated GUI for a «

— _). — — — e — — — — e — — — — g — — — — i — — —

(BaseModel) fiatlight.

fiat_togui.dataclass_example

4
T

fiatlight.fiat_togqui.basemod:

s.ExampleBaseModel

A sophisticated GUI for a |

fiatlight.fiat_types.file_types.FilePath fiatlight.fiat_toqui.file_ty
synonym for str, describing a file path A Gui that enable to selec

(NewType)

fiatlight.fiat_types.file_types.TextPath fiatlight.fiat_toqui.file_ty

synonym
(NewType)

for str, describing a video file path

I I

| |

I I

I I

| synonym for str, describing a text file path | A Gui that enable to selec

| (NewType) |

| fiatlight.fiat_types.file_types.ImagePath | fiatlight.fiat_togui.file_ty

| synonym for str, describing an image file path | A Gui that enable to selec

| (NewType) |

| fiatlight.fiat_types.file_types.AudioPath | fiatlight.fiat_togui.file_ty

| synonym for str, describing an audio file path | A Gui that enable to selec

| (NewType) |
fiatlight.fiat_types.file_types.VideoPath fiatlight.fiat_toqui.file_ty

A Gui that enable to selec

fiatlight.

synonym

fiat_types.file_types.FilePath_Save
for str, describing a file path for

saving (NewType)

fiatlight.fiat_toqui.file_ty
A Gui that enable to selec
dialog.

fiatlight.
synonym for str, describing a text file path for

fiat_types.file_types.TextPath_Save

saving (NewType)

fiatlight.fiat_toqui.file_ty
A Gui that enable to selec
file dialog.

— — — _I. — — — i — — — i — — —

fiatlight.

synonym

fiat_types.file_types.ImagePath_Save
for str, describing an image file path

for saving (NewType)

— — — _I. — — — i — — — i — — —

fiatlight.fiat_togqui.file_ty
A Gui that enable to selec
file dialog.

fiatlight.

synonym

fiat_types.file_types.AudioPath_Save
for str, describing an audio file path

for saving (NewType)

fiatlight.fiat_toqui.file_ty
A Gui that enable to selec
file dialog.

fiatlight.

synonym

fiat_types.file_types.VideoPath_Save
for str, describing a video file path

for saving (NewType)

fiatlight.fiat_toqui.file_ty
A Gui that enable to selec
file dialog.

(BaseModel) fiatlight.fiat_kits.fiat_image.cv_colo

r_type.ColorConversion

A color

conversion from one color space to

another (color spaces use the ColorType enum).

fiatlight.fiat_togui.basemod:
A sophisticated GUI for a |

— — _I.____ [S AR U K ——

(BaseModel) fiatlight.fiat_kits.fiat_image.lut_typ

es.ColorLutParams

3 —— _I.____ [S A U S ——

fiatlight.fiat_togui.basemod:
A sophisticated GUI for a |

(BaseModel) fiatlight.fiat_kits.fiat_image.camera_

image_provider.CameraParams
Parameters for the camera image provider

fiatlight.fiat_togqui.basemod:
A sophisticated GUI for a |

None
All types whose name starts with
fiatlight.fiat_kits.fiat_image.image_types.Image

fiatlight.fiat_kits.fiat_imat

A highly sophisticated GUI
Zoom/Pan, show channels, sho
etc.

None
Union of types whose name starts with
fiatlight.fiat_kits.fiat_image.image_types.Image

fiatlight.fiat_kits.fiat_imat

A highly sophisticated GUI
Zoom/Pan, show channels, sho
etc.

(BaseModel)

fiatlight.fiat_kits.fiat_image. lut_types.LutParams
Simple parameters to create a LUT (Look-Up

Table) transformation to an image

fiatlight.fiat_kits.fiat_ima
A GUI for LutParams, allow:
Look-Up Table transformation

fiatlight.fiat_kits.fiat_implot.array_types.FloatM
atrix_Diml
synonym for a 1D ndarray of floats (NewType)

fiatlight.fiat_kits.fiat_imp

A GUI for presenting 1D or
array as a line, scatter (+
small enough)

fiatlight.fiat_kits.fiat_implot.array_types.FloatM
atrix_Dim2
synonym for a 2D ndarray of floats (NewType)

fiatlight.fiat_kits.fiat_imp

A GUI for presenting 1D or
array as a line, scatter (+
small enough)

fiatlight.fiat_kits.fiat_ai.prompt.Prompt
synonym for a string used as a prompt, used for
AI text and image generation models (NewType)

fiatlight.fiat_kits.fiat_ai.|
A Gui to edit a prompt, wi
in a popup.

pandas.core.frame.DataFrame fiatlight.fiat_kits.fiat_dat
A class to present a panda

and other features. Open in

The top level container for all the plot A Gui that can present a r
elements.

| |
| |
I I
| matplotlib.figure.Figure | fiatlight.fiat_kits.fiat_mat
I I
| |

Fiat Tuning: Tune functions

Introduction

Fiatlight provides you with powerful tools to visually debug the intermediate states of your function.

By adding a fiat_tuning attribute to a function, you can provide additional information that will be
displayed in the GUI node for this function. This attribute is a dictionary and can contain named

data values or descendants of AnyDataWithGui. This information can be used to fine-tune the

function, debug it, or visualize intermediate states.

Moreover, this information can be updated in the GUI, even if the function is a long-running process

called asynchronously.

Example: The image below shows a sort competition between different algorithms. The GUI

nodes display in real time the evolving state of each algorithm, using “fiat_tuning”.

See “Advanced Video Tutorial: Sort Algorithm Visualizer” below for more details.

Example: Measure Execution Time

In the example below, we will add a simple float into the fiat_tuning attribute of the sort_list
function. This float will represent the duration of the sort operation.

The collapsible region “Fiat Tuning” will display this duration:we can see that in this example, it
takes about 0.75 seconds to sort a list of 10,000,000 elements.

https://share.descript.com/view/oBub1WN28bX
https://share.descript.com/view/oBub1WN28bX

import fiatlight as fl
import time

@fl.with_fiat_attributes(n__range=(1, 10_000_000))
def make_random_list(n: int) —> list[int]:

import random

return [random.randint(@, 100) for _ in range(n)]

def sort_list(l: list[int]) —> list[int]:
start = time.time()
r = sorted(1)
duration = time.time() - start
fl.add_fiat_attributes(sort_list, fiat_tuning={"duration": duration})
return r

fl.run([make_random_list, sort_list], app_name="Sort duration")

= sort_list |_ E]
make_random_list — & p— I
- e & Param
©) e — @ (¥ List of 9663867 elements (...) (@) (]
& n 9663IBET - | N ol '
R |E| = @ 5r Fiat Tuning
FIY e =
_?_I ar — Output S=— duration 0.7448 L)
utput - | o — '
. — ql ‘ﬂ‘ @ [: H Output
List content @, Output £ RJ ™ v
0000D0D: 87 ’T________ifu il
0000001: 50 |List content &, |
00DDoO0DZ: 59 0000000: 0
0000003; 20 0000001: 0
000000 @ 0000002: O
0000005 90 0DDO003: O
000000GE: 71 DOOO00S, O
000DO0T: & 0000005: 0
0000008; 80 0000006 O
000000%: 27 0000007: O
...9663857 more elements DODODOB: 0
DOOO0O0S: O
. BE63IBST more elements

Example: Tune using an Image

The fiat_tuning attribute can also be used to display widgets (which must be descendants of
AnyDataWithGui) in the GUI node.

In the example below, we will add an image widget (ImageWithGui) into the fiat_tuning attribute.

demos/images/toon_edges.py is a good example of how to use the fiat_tuning attribute.

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/demos/images/toon_edges.py

add_toon_edges is a complex function that adds a toon effect to an image, by adding colored
edges to the image contours. The contour detection is extremely sensitive to the parameters,
and the fiat_tuning attribute is used to display the intermediate states of the function in
the GUI.

Here are some commented extracts of the function:

from fiatlight.fiat_kits.fiat_image import ImageU8_3, ImageU8_1

def add_toon_edges
image: ImageU8_3,

... lots of parameters ...
) —> ImageU8_3:
edges: ImageU8_1 # = ... (compute the edges)
dilated_edges: ImageU8_1 # = ... (dilate the edges)
image_with_edges: ImageU8_3 # = ... (superimpose the edges on the image)

fiat_tuning: add debug internals to ease fine-tuning the function inside the
from fiatlight.fiat_kits.fiat_image import ImageWithGui

Add to fiat_tuning any variable you want to be able to fine-tune or debug in
*x Either a raw type (int, float, str, etc.): see durations
* Or a descendant of AnyDataWithGui: see "canny", "dilate", "image_with_e
fl.add_fiat_attributes(add_toon_edges, fiat_tuning={

"duration_canny": duration_canny,

"duration_dilate": duration_dilate,

"duration_blur": duration_blur,

"duration_merge": duration_merge,

"canny": ImageWithGui(edges),

"dilate": ImageWithGui(dilated_edges),

"image_with_edges": ImageWithGui(image_with_edges),
})

return the image with edges
return image_with_edges

Once these internals are set, you can see the function “Internals” in the GUI:

import fiatlight as fl
from fiatlight.fiat_kits.fiat_image import ImageU8_GRAY, ImageU8_3, image_source
from fiatlight.demos.images.toon_edges import add_toon_edges

fl.run([image_source, add_toon_edges], app_name="Toon edges")

st T i () =T-]

@ Pararn
& iy |I| Iruge 0, 10N, % niR

-
e) — ¢ e () D ase
E|E| - Aaumme Ay |E| m

[Edaiia) rosajn () (N & o B i e |
Yo Ms rags sre ettt e [[Capgr B el e
%El ~ Datpas 13_grachant '.,_.d]
J & i e g i)
[shess chnamia MpewrE e () APERTURED [:T..mn_“-_n, il wrERTLRE
diaie [¥] bernrl simed mowgh shapes-slopiviiapessn. [B])
s (5] BB &
wagra [l qm0 |
intermiy L T |
=0

.
N

][] [z il
||1.r:;m|' aau.:.
[wee |
E._EI Pl Tusiy

daration_canry DUOOGZAED !|
davalin_disle (UONTAI]
daratin blgr n
daration_remge DUFHTI !|
am @ as
LY

=

(8] ¥ =

286

uinil | O0LERE - 2aor:]. 325

The image above shows the GUI node for the toon_edges function, with the expanded “Fiat
Tuning” section: it displays the execution time of each step, as well as an image
representation of the intermediate edges and dilated edges.

Debugging Functions exceptions

When a function raises an exception, Fiatlight catches and displays it without crashing the
application. Instead, you will see a "Debug this exception” button that you can use to trigger the

exception again.

This feature is invaluable for debugging and making your functions more robust. If you are using a
debugger, you will be taken directly to the point where the exception occurred, with the correct
inputs to reproduce the bug.

_Note: this feature can be disabled with:

fl.get_fiat_config().run_config.catch_function_exceptions = False

Example: a Math Exception

With this setup, if the input value of a causes math.log(cos_a) to produce an error (when cos_a is

negative).

Fiatlight will catch and display the exception, allowing you to debug it easily.

import fiatlight as f1l
import math

def my_function(a: float) —> float:
cos_a = math.cos(a)
r = math.log(cos_a)
return r

fl.run(my_function, app_name="Math domain exception")

my_function — 4

& Param
a 2.200 SN I -
Exception:
math domain error
@ Debug this E:n:ceptiun'a,
@ Output
Output Errar

Functions Graph

FunctionsGraph is one of the core classes of FiatLight: it represents a graph of functions, where
the output of one function can be linked to the input of another function.

e Source: see its full code online

e API: FunctionsGraph API

Creating a FunctionsGraph

When a FunctionsGraph can be created automatically

In simple cases (one function, or a list of functions that are chained together), you do not need to
create a FunctionsGraph. See the examples below.

Single function:

import fiatlight as f1
def f(x: int) —-> int:
return x + 1
fl.run(f, app_name="Single function")

(o] Faram

= Output

Output 3 @

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_core/functions_graph.py

Chained functions:

import fiatlight as f1l
def f(x: int) —> int:
return x + 1
def g(x: int) —> int:
return x x 2
fl.run([f, gl, app_name="Chained functions")

f E
@ Param Param

X 3 SR N -] @ 4 (@
it Output ar| —Output
Output 4 ® @ Output g (@

When you need to create a FunctionsGraph

For more complex cases, you can create a FunctionsGraph manually. This allows you to precisely
control the links between the functions.

import fiatlight as fl

def int_source(x : int) —> int:
"""This function will be the entry point of the graph
Since its inputs is unlinked, fiatlight will ask the user for a value for x

return x

def square(x: int) —> int:
return x * X

def add(x: int, y: int) —> int:
return x + vy

1. Create the graph

Notes:
- in this example we add the function “square’ *xtwo timesx!
Each of them will have a different *unique namex: '"square_1" and '"square
- instead of creating a graph from a function composition, we could also cre
and add the functions manually, like show in the comment below:
graph = fl.FunctionsGraph.create_empty()
graph.add_function_composition([int_source, square, square])

Q H HHHHBRH B

raph = fl.FunctionsGraph.from_function_composition([int_source, square, square])

2. Manually add a function
graph.add_function(add)

3. And link it

First, link the output of int_source to the "x" input of add

Note: we could also specify the source output index: src_output_idx=0 (but this i
graph.add_link("int_source", "add", dst_input_name="x")

Then, link the output of the second “square’ to the "y" input of add
graph.add_link("square_2", "add", dst_input_name="y")

4. Run the graph
fl.run(graph, app_name="Manual graph")

int_source () add

@ Param Params
X 2 A N -] @ x 2
ar Output / @ y 16 ([
Output 2 i @ @ [3i5] — Output
J Output 18 ([
square square
Param Param

@ x 2 (W @ x 4 (@

ar Output / - Output

Output 4 M @ Output 16 M @

Validate inputs with Fiatlight

Introduction

Validators are functions that check the validity of a parameter value and raise a ValueError (with a
nice error message), or correct the value if it is not valid. They are a powerful tool to ensure that the
user enters valid values for the function parameters.

Example: Validators for function parameters

The code below will produce a GUI where:

e The even_int parameter must be an even integer. If it is not, the user will see a warning.

e The multiple_of_5 parameter will automatically correct the input to the nearest multiple of 5.

This enhances user experience by providing immediate feedback and corrections, making the

application more robust and user-friendly.

import fiatlight as fl

def even_int_validator(x: int) —> int:
"""This validator checks that the value is an even integer, and warns the user
if x % 2 = 0:
raise ValueError("The value must be an even integer")
return x

def multiple_of_5_validator(x: int) —> int:
"""This validator will correct the user input to the closest multiple of 5."""
return int(x / 5) * 5

def my_function(even_int: int = @, multiple_of_5: int = 0) —-> int:
return even_int + multiple_of_5

fl.add_fiat_attributes(
my_function,
even_int__validator=even_int_validator,
even_int__range=(-10, 10),
multiple_of_5_ validator=multiple_of_5_validator,
multiple_of_5__range=(-100, 100)

)

fl.run(my_function, app_name="Validators")

my_function

Params

4\ The value must be an even integer

I
23

Output

Note: instead of using fl.add_fiat_attributes , you can also use the
@fl.with_fiat_attributes decorator on top of the function to register its validators.

Example: Validators for Dataclass members

The code below will produce the same GUI as the previous example, but this time using a
dataclass.

import fiatlight as fl
from dataclasses import dataclass # optional, since fiatlight will add the @datacl
when using the @fl.dataclass_with_gui_registra

def even_int_validator(x: int) —> int:
"""This validator checks that the value is an even integer, and warns the user
if x % 2 !'= 0:
raise ValueError("The value must be an even integer")
return x

def multiple_of_5_validator(x: int) —> int:
"""This validator will correct the user input to the closest multiple of 5."""
return int(x / 5) *x 5

Note: the decorator @fl.dataclass_with_gui_registration will also apply
the @dataclass decorator to the class
@fl.dataclass_with_gui_registration(
even_int__validator=even_int_validator,
even_int__range=(-10, 10),
multiple_of_5_ validator=multiple_of_5_validator,
multiple_of_5__range=(-100, 100)
)
class MyData:
even_int: int = 0
multiple_of_5: int = 0

def f(v: MyData) —> MyData:
return v

fl.run(f, app_name="Validators in a Dataclass")

f
&) Param

A TInvalid values

ever int 1

A The value must be an even integer

multiple_of_5

&) Output

Note: instead of using the decorator @fl.dataclass_with_gui_registration on top of the
dataclass, you can also use the the function fl.register_dataclass ' to register the dataclass,

and add fiat attributes, such as the validators.

Example: Validators for BaseModel members

The code below will produce the same GUI as the previous example, but this time using a Pydantic
model. In this case we can also use standard Pydantic validators.

Note: Fiatlight will also interpret the range from the less than (le) and greater than (ge)
constraints in the Pydantic model.

import fiatlight as fl
from pydantic import BaseModel, Field, field_validator

@fl.base_model_with_gui_registration()

class MyData(BaseModel):
even_int: int = Field(0, ge=-10, le=10)
multiple_of_5: int = Field(@, ge=-100, 1le=100)

@field_validator("even_int")
def even_int_validator(cls, v):
if vs2!=0:
raise ValueError("The value must be an even integer")
return v

@field_validator("multiple_of_5")
def multiple_of_5_validator(cls, v):
return int(v / 5) % 5

def f(v: MyData) —> MyData:
return v

fl.run(f, app_name="Validators in a Pydantic model")

f
@ Param

A Trvalid values

ever_int 1

A Value error, The value must be an even
integ

multiple_of 5

@ Output

Note: instead of using the decorator @fl.base_model_with_gui_registration on top of the
Pydantic model, you can also use the the function fl.register_base_model’ to register the

Pydantic model, and add fiat attributes, such as the validators.

Dataclasses & Pydantic Models

Dataclasses and Pydantic models can easily be registered with their GUI.

Dataclasses

Example: automatically create a GUI for a "Person” dataclass

To create a GUI for a dataclass, you first need to register the dataclass with its GUI.

For this, you canuse fl.register_dataclass(dataclass_type, *xxfiat_attributes) orthe

@fl.dataclass_with_gui_registration(x*fiat_attributes) decorator.

In either case, you can specify GUI options for the fields using the fiat_attributes mechanism.

Option 1: using register_dataclass :

import fiatlight as fl
from dataclasses import dataclass

class Person:
name: str
age: int

fl.register_dataclass(Person, age__range=(0, 120))

Option 2: using the decorator dataclass_with_gui_registration :

.

import fiatlight as fl
from dataclasses import dataclass

@fl.dataclass_with_gui_registration(age__range=(0, 120))
class Person:

name: str

age: int

(This option is shorter, but more intrusive, as it modifies the original class definition.)

Use the generated GUI in Fiatlight

You can use the dataclass as a function parameter, and fiatlight will generate a GUI for it.

r

def greet(person: Person) —> str:
return f"Hello {person.name}, you are {person.age} years old."

Note: this app *will notx remember the values of the dataclass fields between run
fl.run(greet, app_name="Dataclass Person'")

greet —
|§ Param
& person |v g| !
name Allan
dge 34
@ Output

‘Du'-cput Hello Allan, you are 34 years old. |E| Yo

Or use the generate GUI in standalone application

Alternatively, you can use the generated GUI in a standalone application. Below we run an
application using hello_imgui. For more info, see Dear ImGui Bundle doc.

from imgui_bundle import hello_imgui
PERSON = Person(name="John", age=30)
def gqui():
global PERSON
_changed, PERSON = fl.immediate_edit("Who are you?", PERSON)

hello_imgui.run(gui)

Who are you? || [(
name -Juhn

age | Y

Pydantic models

Below is a more complete example of how to use Pydantic models with fiatlight.

Example: automatically create a GUI for nested Pydantic models

Notes:

 fiatlight will automatically generate a serialization/deserialization mechanism for Pydantic
models, so that user entries can be saved and reloaded (when used as function parameters).
This is not available for dataclasses.

e Pydantic models can be nested: in the example below, you will see 3 levels of nesting, and
fiatlight will generate a nice GUI for those.

e Youcanuse fl.register_base_model to register a Pydantic model with its GUI and add fiat
attributes Alternatively, you can use the @fl.base_model_with_gui_registration decorator

(but this is more intrusive, as it modifies the original class definition).

e You can specify GUI options for the fields using the fiat_attributes mechanism.

https://pthom.github.io/imgui_bundle/

e Pydantic field validators (such as Field(ge=0, 1e=90, ...)) are supported and will be
reflected in the GUI.

e Custom validators can be used, as shown in the example below.

e Validation errors will be displayed in the GUI (in yellow)

import fiatlight as fl
from enum import Enum
from pydantic import BaseModel, Field

An Enum which will be associated to a Gui automatically
class TrainingDataType(Enum):

Test = "test"

Train = "train"

Validation = "validation"

GeographicInfo: a pydantic model, with validation on latitude and longitude
which will be reflected in the GUI
class GeographicInfo(BaseModel):

latitude: float = Field(ge=0, 1e=90, default=0)

longitude: float = Field(ge=-180, 1t=180, default=0)

We register the GeographicInfo model with its GUI
(the sliders for lon/lat will be limited to the ranges specified in the Fields)
fl.register_base_model(GeographicInfo)

A custom validator, which will be used to validate the short description
def validate_short_description(value: str) —> str:
if len(value) > 30:
raise ValueError("Description is too long")
return value

A second model, which nests the first one (GeographicInfo)
class ImageInfo(BaseModel):

geo_info: GeographicInfo = GeographicInfo()

description: str = "Short Description..."

width: int = @

height: int = 0

We register the ImageInfo model with its GUI, and add some fiat attributes
Also, we add a custom Fiatlight validator for the description field
fl.register_base_model(

Imagelnfo,

width__range=(0, 2000),

height__range=(0, 2000),

description__label="Description",

description__validator=validate_short_description,

geo_info__label="Geographic Info",

A third model, which nests the second one (ImageInfo)
In total, it has 3 levels: TrainingImage -> ImageInfo —-> GeographicInfo
In this case, we use the decorator to register the model with its GUI

@fl.base_model_with_gui_registration(
image_path__label="Select Image",
training_type__label="Training Set",
info__label="Image Info",

)

class TrainingImage(BaseModel):

info: ImageInfo = ImageInfo(width=0, height=0)

Use the generated GUI in a standalone application

.

from imgui_bundle import hello_imgui

We create an instance of the Pydantic model
IMAGE = TrainingImage()

def gqui():
global IMAGE

hello_imgui.run(gui)

Image Info |w| :: |!
Select Image [Salect file)
Training Set | Test - v
Image Info [w] [@%) |

Geographic Info [w]

latitude 0.000
longitude 0.000
Description Short Description...
width .]
height : i}

Or use the generated GUI in Fiatlight

image_path: fl.fiat_types.ImagePath = "" # type: ignore
training_type: TrainingDataType = TrainingDataType.Test

_changed, IMAGE = fl.immediate_edit("Image Info", IMAGE)

def process_image(image: TrainingImage) -> str:
import os
basename = os.path.basename(image. image_path)
return basename

Note: this app *willx remember the values of the Pydantic model fields between ru
fl.run(process_image, app_name="Pydantic Image Model")

process_image Q @:
2] Param
Image Info E] @ @

A Invalid values

Select Image Select file| house.jpg

Training Set Test v

Image Info [E] @

A Invalid values
Geographic Info [:]

latitude (33.445 |
longitude | 49.288| J
Description A house in the countryside, near LCI-]
A Description is too long
width ' 786
height ' W 610
@ Output -
Output Unspecified L

In the previous screenshot, the GUI generated by fl.base_model_with_gui_registration will
automatically validate the data according to the model’s constraints, and thus display an error
message (because in this case, the description is too long).

Video Tutorial

A short video tutorial is available for this topic.

& Watch Video

https://share.descript.com/view/CxaFQ5T6iq7

Fully customize a Function Gui

Introduction

By subclassing FunctionWithGui , you can fully customize the behavior of the function:

e you can add a GUI for the internal state of the function (e.g. displaying a live plot of a sound
signal)
e you can add a heartbeat function that will be called at each frame (e.g. get the latest data from

a sensor)

e you can save and load the internal GUI presentation options to/from a JSON file (e.g. to save
the layout of a plot)

Example: Camera & Internal State

fiatlight.fiat_kits.fiat_image.CameralmageProviderGui is a good example of a custom

FunctionWithGui class.

You can see it in action below:

r

import fiatlight as f1
from fiatlight.fiat_kits.fiat_image import CameralmageProviderGui, ImageU8_3
import cv2

def rotate_45(image: ImageU8_3) —> ImageU8_3:
transform = cv2.getRotationMatrix2D((image.shapel[l] / 2, image.shapel0] / 2), 4
return cv2.warpAffine(image, transform, (image.shapel[l], image.shapel@])) # ty

camera_provider_gui = CameralImageProviderGui()
fl.run([camera_provider_gui, rotate_45], app_name="Camera provider with rotation")

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_kits/fiat_image/camera_image_provider.py

CameralmageProviderGui —| 4 rotate_45 _| 2

& Function internal state @ Param

Q @ image B| Image (480, 540, 3) uintE Q&

{Mote: some cameras may not support all the settings) = Dutput

Camera Params [w Q Output = Q @
device_number 0

Show channels

camera_resolutio. 1280x720 1920x 1080 (@) 60x480 320m240
Start/Stop Camera

= Output

Cutput - e M o

Show channels

=l B B

uintB 6A0wdED - Zoom:0.643

Inspect

uintd 640480 - Zoom:0.569

Inspect

Commented extracts of X camera_image_provider.py

Look at the CameralmageProviderGui class that extends FunctionWithGui :

Notes:

e CameralmageProviderGui der uses a CameralmageProvider class that providesimages
from a camera.
* CameraParams contains the state of the camera (device number, brightness, contrast,

etc.). This state is serialized. As it is as a Pydantic model, a GUI for it is automatically
created by Fiatlight, and its state is serialized.

CameralmageProviderGui (a descendant of FunctionWithGui):

file:///Users/pascal/dvp/OpenSource/ImGuiWork/_Bundle/fiatlight/src/python/fiatlight/doc/_build/html/_downloads/8526087f330b97834e4b6f54c3704340/camera_image_provider.py

from fiatlight.fiat_notebook import look_at_code
%Llook_at_python_code
fiatlight.fiat_kits.fiat_image.camera_image_provider.CameralmageProviderGui

CameraParams (serialized internal state):

r

import fiatlight as fl

from enum import Enum

from pydantic import BaseModel
import cv2

class CameraResolution(Enum):
HD_1280_720 = [1280, 720]
FULL_HD_1920_1080 = [1920, 1080]
VGA_640_480 = [640, 480]

@fl.base_model_with_gui_registration(device_number__range= (@, 5), brightness__rang
class CameraParams(BaseModel):

device_number: int = 0

brightness: float = 0.5

contrast: float = 0.5

camera_resolution: CameraResolution = CameraResolution.VGA_640_480

class CameralmageProvider:
'""'A class that provides images from a camera'''
camera_params: CameraParams
cv_cap: cv2.VideoCapture | None = None

Custom types registration

By calling fiatlight.register_type(DataType, DataTypeWithGui) , itis possible to register a
custom type with its GUI.

For a given type's GUI, it is possible to customize many aspects. Basically all the callbacks and
options inside AnyDataGuiCallbacks can be customized.

Example 1: a customizable Normal Distribution type

Step 1: Define the Custom Type

First, let's define a new type called NormalDistribution.

class NormalDistribution:
mean: float = 0.0
stddev: float = 1.0

def __init_ (self, mean: float = 0.0, stddev: float = 1.0) —-> None:
self.mean = mean
self.stddev = stddev

Step 2: Create a Class to Handle the Custom Type

Next, we create a class NormalDistributionWithGui that extends AnyDataWithGui and defines the
custom presentation and editing logic for the NormalDistribution type.

It will handle:

e A custom GUI for editing the NormalDistribution type

e A custom GUI for presenting the NormalDistribution type (using a cached figure, which is

updated when the distribution changes)
e Serialization and deserialization of the custom type

e A default value provider

import fiatlight as fl

from imgui_bundle import imgui, imgui_fig
import matplotlib.pyplot as plt

from matplotlib.figure import Figure
import numpy as np

class NormalDistributionWithGui(fl.AnyDataWithGui[NormalDistribution]):
Cached figure for the distribution plot
figure: Figure | None = None
boolean to indicate if the figure image should be refreshed
shall_refresh_figure_image: bool = True

def

def

__init__(self) -> None:
super().__init__ (NormalDistribution)

Edit and present callbacks

self.callbacks.edit = self._edit_gui

self.callbacks.present = self._present_gui

self.callbacks.present_str = lambda value: f'"Normal Distrib: Mean={value.me

Default value provider
self.callbacks.default_value_provider = lambda: NormalDistribution()

Serialization of the custom type

(note it would be automatic if we used a Pydantic model)
self.callbacks.save_to_dict = lambda value: {"mean": value.mean, "stddev":
self.callbacks.load_from_dict = lambda data: NormalDistribution(mean=datal"

Callback for handling changes: we need to subscribe to this event
in order to update the self.figure when the distribution changes
self.callbacks.on_change = self._on_change

_on_change(self, value: NormalDistribution) -> None:
remember to close the previous figure to avoid memory leaks
if self.figure is not None:

plt.close(self.figure)

Create the figure

x = np.linspace(value.mean - 4 x value.stddev, value.mean + 4 x value.stdde
y = (1 / (value.stddev *x np.sqrt(2 x np.pi))) * np.exp(-0.5 * ((x — value.m
figure = plt.fiqure(figsize=(4, 3))

plt.plot(x, y)

plt.title("Normal Distribution')

plt.xlabel("x")

plt.ylabel("Density")

plt.grid(True)

Cache the figure
self.figure = figure

Indicate that the figure image should be refreshed
self.shall_refresh_figure_image = True

@staticmethod
def _edit_gui(value: NormalDistribution) —> tuple[bool, NormalDistribution]:
Note: we receive the current value and return a tuple with
a boolean indicating if the value was modified
modified = False
imgui.text("Edit Normal Distribution:")
imgui.set_next_item_width(100)
changed, new_mean = imgui.slider_float("Mean", value.mean, -10.0, 10.0)
if changed:
value.mean = new_mean
modified = True
imgui.set_next_item_width(100)
changed, new_stddev = imgui.slider_float("StdDev", value.stddev, 0.1, 10.0)
if changed:
value.stddev = new_stddev
modified = True

return modified, value

def _present_gui(self, _value: NormalDistribution) —> None:
We do not use the value which was passed as a parameter as we use the cac
which was updated in the _on_change callback
imgui_fig.fig("Normal Distribution", self.figure, refresh_image=self.shall_
self.shall_refresh = False

Step 3: Register the type

Finally, we register the custom type with its GUI, simply by calling the register_type function.

fl.register_type(NormalDistribution, NormalDistributionWithGui)

From now on, the NormalDistribution type will be associated with the NormalDistributionWithGui
GUI: any function that uses NormalDistribution as a parameter or as a return type will automatically
have a GUI for editing and presenting the NormalDistribution type.

Step 4: Use the custom type in a function

In this example, our function simply returns the NormalDistribution instance that was passed to it.
In the screenshot, you can see the "edit” callback in action in the Param edition section, and the
"present” callback in the Output section.

def f(distribution: NormalDistribution) —> NormalDistribution:
return distribution

fl.run(f, app_name="Normal Distribution")

2024-07-04 23:40:32.252 Python[68193:11625526] ApplePersistenceIgnoreState: Existine

f
Param

& distribution E] @ @

Edit Normal Distribution:
| 4343 | Mean

| 3919 |StdDev

@ Output
Output B [—L_i] Yo

Normal Distribution

0.10 A
0.08 A
» 0.06 -
: 0.04 -
0.02 A

0.00 -

-10 -5 0 5 10 15 20

Example 2: a Length type with imperial units

Step 1: Define the custom type for which we want to create a GUI

#

from typing import NewType

Length

= NewType("Length", float)

Step 2: Create a class to handle the custom type

#

import fiatlight

from fiatlight import AnyDataWithGui

from fiatlight.fiat_widgets import fontawesome_6_ctx, icons_fontawesome_6
from typing import NewType, Any, Dict

from imgui_bundle import imgui, hello_imgui, imgui_ctx, ImVec4

The specific GUI for our custom type
class LengthWithGui(AnyDataWithGuil[Length]):
use_imperial_units: bool = False

def __init__ (self) —-> None:

def

super().__init__ (Length)

self.callbacks.edit = self._edit # A custom callback for editing the data
self.callbacks.present = self._present # A custom callback for presenting
self.callbacks.present_str = self._present_str # A custom callback for pre
self.callbacks.default_value_provider = lambda: Length(1.0) # A custom cal
custom callback for saving the GUI options (here, we save the imperial un
self.callbacks.save_gui_options_to_json = self._save_gui_options_to_json
self.callbacks.load_gui_options_from_json = self._load_gui_options_from_jso

_edit(self, value: Length) —> tuplelbool, Lengthl]:
_, self.use_imperial_units = imgui.checkbox("Imperial"™, self.use_imperial_u
format = "%.3g m" if not self.use_imperial_units else "%.3g yd"

value_unit = value % 1.09361 if self.use_imperial_units else value
imgui.set_next_item_width(hello_imgui.em_size(10))
changed, new_value_unit = imgui.slider_float(

"Value", value_unit, le-5, 1lell, format, imgui.SliderFlags_.logarithmic
)
if changed:

value = Length(new_value_unit / 1.09361 if self.use_imperial_units else
return changed, value

@staticmethod

def _present_str(value: Length) —> str:
return f"Length: {value:.2f} m"

@staticmethod

def _present(value: Length) —> None:

with fontawesome 6_ctx():
yd = int(Length(value * 1.09361))
inches = int((Length(value x 1.09361 - yd) % 36))
bananas = int(value / 0.2)
imgui.text(f'"Length: {yd} yd {inches:.0f} in (aka {bananas}")

imgui.same_line()

with imgui_ctx.push_style_color(imgui.Col_.text.value, ImVec4(1l, 0.5, 0
imgui.text(icons_fontawesome_6.ICON_FA_CARROT)

imgui.same_1line()

imgui.text(")")

def _save_gui_options_to_json(self) —> Dict[str, Any]:
return {"use_imperial_units": self.use_imperial_units}

def _load_gui_options_from_json(self, json: Dict[str, Any]) —-> None:
self.use_imperial_units = json.get("use_imperial_units", False)

Step 3: Register the custom type with its GUI
#

from fiatlight import register_type

register_type(Length, LengthWithGui)

Step 4: Use the custom type in a function

#

A function that uses our custom type

def circle_perimeter(radius: Length) —> Length:
return Length(2 * 3.14159 * radius)

Run the function with the GUI
fiatlight.run(circle_perimeter, app_name="Circle Perimeter in banana units")

2024-07-04 23:40:37.134 Python[68193:11625526] WARNING: Secure coding is not enable«

circle_perimeter

@ Param
& radius - Q I" -]
Imperial
23.9m Value
@ 5 Output
Output v QM

Length: 164 yd 8 in (aka 750 2")

Example 3: a sound player

The sound wave player also uses a custom type with a GUI.

from fiatlight.fiat_kits.experimental.fiat_audio_simple.demos import demo_sound_wav

sound_wave_player_gui_demo.main()

fsnund_mw_frcm_hle H\I
E] Param
& flle_path & - Libera me.mp3
@3 Dutput
Output IE] [E] o
Duration: 326.82 =, Sample Rate: 44100 Hz
[1.&]'nl'nlume

Audio Waveform

0.0006 |

0.0004 |

00002 §

Amplitude
o

-0.0002 §

0.0004 |

-0.0006 s " L .]

00 30 00 30 00 30 00 30 00 30 00
141770 00:00 D01 00202 00:03 00:04 00:05
Time
) (O])
02:09.75/ 052681 | | seconds)
LS

For more info, see its source code).

How to create a new “fiat kit”

fiat_kit_skeleton

fiatlight.fiat_kits.fiat_skeleton is a starting point for creating new widgets: it is a minimalistic kit that

contains the necessary files to create a new widget.

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_kits/experimental/fiat_audio_simple/sound_wave_player_gui.py
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiatlight/fiat_kits/fiat_kit_skeleton

fiat_kit_skeleton

— __init__.py

— mydata.py # An example data or library that you want to pr
— mydata_presenter.py # The presenter of the data

| # Also contains a derivate of PossibleCustomAttr:
| # where all the custom attributes are defined
— mydata_with_gui.py # MyDataWithGui: the widget that will be display

(inherits from AnyDataWithGui, implements all the callbacks
of AnyDataGuiCallbacks, and uses MyDataPresenter for
complex data presentation)

See files:

e mydata.py

e mydata_presenter.py

e mydata_with_gui.py

fiat_kit_skeleton in action

fiatlight.fiat_kits.fiat_dataframe it was developed starting from the skeleton. It is a good example on

how it can be customized.

fiat_dataframe
|— dataframe_presenter.py # The presenter of the data (presentati
| # Also contains a derivate of PossibleCi

l— dataframe_with_gui.py # The widget that will be displayed in -
| # (inherits from AnyDataWithGui, impleme

| # of AnyDataGuiCallbacks, and uses Datal
| # complex data presentation)

See files:

e dataframe_presenter.py

e dataframe_with_gui.py

Run the demos

Install optional dependencies

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiatlight/fiat_kits/fiat_kit_skeleton/mydata.py
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiatlight/fiat_kits/fiat_kit_skeleton/mydata_presenter.py
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiatlight/fiat_kits/fiat_kit_skeleton/mydata_with_gui.py
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiatlight/fiat_kits/fiat_dataframe
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiatlight/fiat_kits/fiat_dataframe/dataframe_presenter.py
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiatlight/fiat_kits/fiat_dataframe/dataframe_with_gui.py

In order to run the demos, you may need to install per domain dependencies:

e For Aldemos: pip install -r requirements-ai.txt

e For audio demos: pip install -r requirements—audio.txt

Standard demos

Several demos are available in the src/python/fiatlight/demos folder:

%%bash
tree -I "_ _pycache__|fiat_settings|priv_experiments|fonts|__init__ .py" ../demos/ |

. . /demos/

— ai

—— demo_sdx1_meme. py

L— demo_sdx1_toon_edges.py

— audio

—— demo_audio_processing_link.py

—— microphone_gui_demo_Llink.py

L— sound_wave_player_gui_demo_1link.py

—— custom_graph

demo_custom_graph.py

— hello_rosetta

— example_validation.py

L— hello_rosetta.py

— images

—— demo_computer_vision.py

—— demo_oil_paint.py

—— old_school_meme. py

— opencv_wrappers.py

L— toon_edges.py

— math

—— demo_binomial. py

—— demo_float_functions.py

—— demo_plot_array.py

L— demo_plot_manual_present.py

— plots

L— demo_matplotlib.py

— string
demo_word_count.py
str_functions.py

Notebook demos

You can also run all the demos that are present in the documentation (there are a lot of interesting
demos, together with screenshots)

e install Jupyter: pip install jupyter
e Launch Jupyter with the following command: jupyter lab

e After Jupyter is launched, a browser page will open: navigate to the “src/python/fiatlight/doc”
folder to find the demos.

API

High level overview video

The video below present a high-level overview of Fiatlight's architecture and how it automatically

maps functions and data types to Ul components.

& Watch Video

Architecture

e Fiatlight Architecture: Overview of the Fiatlight architecture, including the class diagrams and

folders structure.

fiat_core

fiat_core is the foundational package of the fiatlight framework. It focuses on wrapping data and
functions with GUI elements to facilitate interaction.

Its most important classes are:

https://share.descript.com/view/xkgrDb7Kzzj
https://share.descript.com/view/xkgrDb7Kzzj
https://share.descript.com/view/xkgrDb7Kzzj

FunctionWithGui : Encapsulates a function, enriching it with a GUI based on inferred input

and output types. It handles function invocation and manages internal states like exceptions
and execution flags.

e AnyDataWithGui : Wraps any type of data with a GUI. This class manages the data value and

its associated callbacks, and it provides methods to serialize/deserialize the data to/from
JSON.

e AnyDataGuiCallbacks : Stores callback functions for AnyDataWithGui, enhancing interactivity

by allowing custom widgets and presentations.

* FunctionsGraph : Represents a graph of functions, where the output of one function can be

linked to the input of another function. It allows the user to create complex workflows by
chaining functions together.

Fiatlight Architecture

Necessary imports for this doc page
from fiatlight.fiat_notebook import plantuml_magic, display_markdown_from_file

Class diagrams

fiat_core

This is the foundational package of the fiatlight framework. It focuses on wrapping data and
functions with GUI elements to facilitate interaction.

Classes

e AnyDataWithGui : Wraps any type of data with a GUI. This class manages the data value and
its associated callbacks, and it provides methods to serialize/deserialize the data to/from
JSON.

e AnyDataGuiCallbacks : Stores callback functions for AnyDataWithGui, enhancing interactivity
by allowing custom widgets and presentations.

e FunctionWithGui : Encapsulates a function, enriching it with a GUI based on inferred input
and output types. It handles function invocation and manages internal states like exceptions

and execution flags.

e ParamWithGui and OutputWithGui : These classes link parameters and outputs of functions
to their GUI representations.

* FunctionNode : Represents a node in a function graph, containing links to other function
nodes and managing data flow between them.

e FunctionNodelLink : Defines a link between outputs of one function node and inputs of

another, facilitating data flow in the function graph.

e FunctionsGraph : Represents a graph of interconnected FunctionNode instances, effectively
mapping the entire functional structure.

%splantuml_include class_diagrams/fiat_core.puml

fiat_core

@ FunctionsGraph

A graph of FunctionNodes

o functions_nodes
o functions_nodes_links

many

@ FunctionNode

many

o function_with_gui: FunctionWithGui
o output_links: list[FunctionNodeLink]
o input_links: list{FunctionNodeLink]

@ FunctionNodeLink

o src_function_node: FunctionNode
o src_output_idx: int

o dst_function_node: FunctionNode
o dst_input_name: str

many

several

This is the core of fiatlight.

It is a set of classes that can be used to add a GUI
to any data, function or graph of functions.

It does depend on ImGui, but not on
imgui-node-editor.

(© FunctionWithGui

Wraps a function with a GUI

o constructor(f)
(will fill _inputs_with_gui and _outputs_with_gui,
attempting to guess the types)

o invoke()

o name: str =

Linked function
o _f_impl: Callablel..., Any] | None = None

Members linked to the function
o _inputs_with_gui: List[ParamWithGui[Any]]
o _outputs_with_gui: List[OutputWithGui[Any]]

o0 _last_exception_message: Optional[str] = None
0 _last_exception_traceback: Optional[str] = None
o _dirty: bool = True

Behavioral Flags
o invoke_async: bool = False
o invoke_manually: bool = False
o invoke_always_dirty: bool = False

Optional callbacks
o internal_state_gui: BoolFunction | None = None
o on_heartbeat: BoolFunction | None = None

1 or many

«DataType»
ParamWithGui

name: str

data_with_gui: AnyDataWithGui[DataType]
default_value: DataType | Unspecified

@ «DataType»
OutputWithGui

data_with_gui: AnyDataWithGui[DataType]

@ «DataType»
AnyDataWithGui

a class to wrap any data with a GUI

o _value: DataType | Unspecified | Error
o callbacks: AnyDataGuiCallbacks[DataType]

o save_to_json() / load_from_json()

«DataTvpe» W

L) AnyDataGuiCallbacks

a class that stores callbacks for AnyDataWithGui
(most of them are optional)

o edit : BoolFunction (custom widgets for edition)
o present_custom: VoidFunction (for presentation)
o etc.

fiat_togui

fiat_togui provides functions to register new types (classes, dataclasses, enums) so that they are
associated with a GUI.

Functions

* register_type(type_, gqui_type) : register a GUI for a given type. gui_type must be a
descendant of AnyDataWithGui

e register_enum(enum_type) and the equivalent decorator enum_with_gui_registration:
register an enum

e register_dataclass and the equivalent decorator dataclass_with_gui_registration:
register a dataclass base model

e register_base_model and the equivalent decorator base_model_with_gui_registration :
register a pydantic base model

Classes

e IntWithGui, FloatWithGui , etc.: provides GUI for primitive types (int, str, float, bool)

e OptionalWithGui : able to add GUI to Optional[DataType] (if DataType is registered)

%splantuml_include class_diagrams/fiat_togui.puml

This package contains a registry of GUI factories,
able to emit GUI widgets for many data type.

Consequently, it can also add
input/output widgets to a function.
T
|
I
|

fiat_togui \

© free_functions

o register_type(type_, gui_type)
(Stores a GUI for a type: gui_type
can be any descendant of AnyDataWithGui)

Dataclasses
o register_dataclass(dataclass_type)
© @dataclass_with_gui_registration (decorator)
o register_base_model(base_model_type) (Pydantic)
o @base_model_with_gui_registration (decorator)

© PrimitivewithGui

see primitive_gui.py

aka
o IntWithGui, FloatWithGui, StrWithGui

Notes:
e factories are stored in a singleton of the class GuiFactories
® FunctionWithGui's constructor will call
add_input_outputs_to_function_with_gui()
)

© CompositeWithGui

see composite_gui.py

aka
OptionalWithGui, ListWithGui, EnumWithGui, etc.

fiat_runner
fiat_runner is the package that contains the “run” functions:

Free function

uts_to_function_with_gui

- fiat_core \

N

(©)FunctionwithGui

(©) AnyDatawithGui

fiat_run accepts either a standard function, a list of functions, or a graph of functions. It

executes the function(s) and displays the results in a GUI.

e fiat_run(fn) #fnis afunction or a FunctionWithGui
e fiat_run([fnl, fn2,

e fiat_run(graph) # A FunctionsGraph

Classes

.1) # list of functions or FunctionWithGui

e FiatlightGui : The main runtime class that presents a GUI for interacting with a function

graph. It orchestrates the execution and user interaction.

* FiatlightGuiParams : Stores configuration and parameters for the GUI application, such as

visibility toggles and other settings.

%plantuml_include class_diagrams/fiat_runner.puml

fiat_runner

@ «free functions»
Functions

o fiat_run(function, params)
o fiat_run_composition(functions, params)
o fiat_run_graph(graph, params)

T

This module is the entry point _
for any fiatlight GUI application.

|
|
|
|
juses
|
|
|
|

(© FiatlightGui

Runs an application
that presents a function graph
for a Fiatlight

o functions_graph_gui
o params

o run()
4 \

™\

FI; nodes\
(© FiatlightGuiParams

o show_image_inspector: bool @ FunctionsGraphGui

o runner_params: hello_imgui.RunnerParams

o addons: immapp.AddOnsParams

fiat_nodes

fiat_nodes is the package that is able to display a function graph in a node editor (using imgui-
node-editor)

As a final user, you will probably not interact with it.
Classes

e FunctionNodeGui : The GUI representation of a FunctionNode
e FunctionNodeLinkGui : The GUI representation aspect of a FunctionNodeLink

e FunctionsGraphGui : The GUI representation of a FunctionsGraph

https://github.com/thedmd/imgui-node-editor
https://github.com/thedmd/imgui-node-editor

%plantuml_include class_diagrams/fiat_nodes.puml

The GUI representation, using imgui-node-editorlﬁ

fiat_nodes\

@ FunctionsGraphGui

The GUI representation
for a FunctionsGraph

functions_graph
function_nodes_gui: List[FunctionNodeGui]
functions_links_gui: List[FunctionNodeLinkGui]

many many

@ FunctionNodeLinkGui @ FunctionNodeGui
The GUI representation The GUI representation
for a FunctionNodeLink for a FunctionNode
o function_node_link function_node

(specific to imgui-node-editor) (specific to imgui-node-editor)

o link_id: ed.Linkld o node_id: ed.Nodeld
o start_id: ed.Pinld o pins_input: Dict[str, ed.Pinld]
o end_id: ed.Pinld o pins_output: Dict[str, ed.Pinld]

R 9

fiat_core

A\ |
©FunctionNodeLink @FunctionNode @FunctionsGraph

Full diagram

Below is the full class diagram

%splantuml_include class_diagrams/all.puml

i packaga cantains a registry of GUI factors,
able 1o omil GUI widgets for many dats

‘Consequently, i can also add
inputloutput widgels to a function.

~ Gses add_input_outputs_to_function_with_gui
fiat_togul

i

@ ros_toneions

= reister_ypa(iype_ gultype)
(Stores a GUI for a type: gul_type
Can be any deseondantof AnyDataWithGui)

© Pimvanina

fiat_core

[fat_nodes\

© Fonctanscramnout

The GUI representation
for a FunctionsGraph

functions_graph
funcion_nodes_gu: Lis il
functions_links gui: ListfFunctionNodeLinkGui]

isFunctionNodeGu

© Fancionminon

© ronctonnoss

BT
o oupue . TolFuncionmodeLmd
@ Input.nks: ItiFuncionodeLnk)

[@ rorcionon |

[s |

(ot rumner)

© “Fincions -
< fiat_run(funcion, params)

o flat_run_composition(funcions, params)
o fiat_run_graph(raph, params)

© rvgnon

Runs an applcatior
hat prsents a Tunction graph
for a Fiatlg

= functions_graph_gul
params

o run()

T
o
Py —
el

© Foncientodetinkon

The GUI representat
for a FunctionNode

ton, The GUI representation

function_node

for a FunctionNodeLink

tions_nodes
e

/]

onWihGul

Wraps a function with a GUI

s constructor(7)

attempting to guess the type:
o invoke()

)
ol inputs gl and _outputs it g

Linked functior

_{_impl: Caliable[... Any] | Nore.

@ ronctonostin

Members linked to the function
o _inputs_with_ui: List{ParamWithGul{Any]]
2 Zoutputs_with_qui: List{OutputiitnGuilAny)
_last_exception_message: Optionalfstr]

= Jasi_excepion.raceback;Optonaf]
o dirty: bool

None
None

o sre_uncion_nede; FuncionNode

o srcouput i

1 T i S
2 Gstinpat nams sir

Bohavioral Flags
olnvoke_utyne: ool = False
woke_manually: bool =
o invake shwaya_ i, boo

e

Optional callbac
o internal_st

5 on_hearibeat: BoolFunction | None =

taciasses
o rogister_dataciass(dataclass_type)

ks
state_gut SooFuncion [None - None
Non

© o
ParaminGu o
see primitive_gui.py name: str Oulp Ut Gl
© Gtaciase wih g eiiaon (docortn = ot i gui [t g AryDatawihGutDataType] |
& egtr b modaiEasemadel e (Pycenc) o NG, FlostIhGul, SYWHhGuL otal viue: DaiaType | Unspeciiod
o @base_model_with_gui vewslralmn (decoralov) (LIl (T (T — 250 | b
{ories are stored i a singeton of the class GufFactries

& FunctionWithGur's constructor will call
2dd_inpul_outputs to_function_with_gui()

© compostaminga

00 composite_gul.py

aka
Oplional\WitnGui, ListWithGui, EnumWithGul, etc.

© e
AnyDataWithGui

a class 10 wrap any data with a GUI

'o_value: DataType | Unspecified | Error
o Gallbacks:

[£7{ = save_to_json() / Ioad_trom json()

© rooemees
AnyDataGuiCallbacks

a class hat stores callbacks for AnyDataWinGul
plional)

 edit - BoolFunction (custom widgets for edition)
 present_custom: VoidFunction (for presentation)
ot

i

& bine_autput: Dicli,ed-pini]

Pinid)

1 1d: ed Pinld

[to_gu

Folder structure

Below is the folder structure of the fiatlight framework.

display_markdown_from_file("

folder_structure.md")

uses add_input_outputs_to_function_with_ui

This i the core of fiatigh N
Itis 8 st o classes thatcan be used 1o add a GUI

_ [T module s the entry point
for any fiatight GUI application

src/python/fiatlight//

-

—— __init__.py
—— fiat_core/

__init__.py
any_data_gui_callbacks.md
any_data_gui_callbacks.py
any_data_with_gui.md
any_data_with_gui.py
detailed_type.py
function_node.py
function_with_gui.py
functions_graph.py
output_with_gui.py
param_with_gui.py
possible_fiat_attributes.py
togui_exception.py

—— fiat_runner/

__init__.py

fiat_qgui.py
fiat_run_notebook.py
functions_collection.py

— fiat_togui/

Readme.md —> fiat_togui.md
init _.py
composite_gui.py
composite_gui_demo.py
dataclass_examples.py
dataclass_gui.py
dataclass_gui_demo.py
explained_value_gui.py
fiat_togqui.md
file_types_gui.py
file_types_gui_demo.py
function_signature.py
make_gui_demo_code.py
primitive_gui_demo.py
primitives_gui.py
str_with_gui.py
str_with_gui_demo.py
to_gui.py

—— fiat_config/

__init__.py
fiat_config_def.py
fiat_style_def.py

—— fiat_types/

__init__.py
base_types.py
color_types.py
error_types.py

core classes
(AnyDataWithGui, FunctionWithGui, et

runner classes
(fiat_run)

fiat_togui utilities
This is the core of the powerful intt
capabilities of Fiatlight

global configuration (style, colors,

Some basic types used throughout Fic

—— fiat_number_types.py
— file_types.py

—— function_types.py
— str_types.py

—— Readme.md —> fiat_image.md
—— __init__.py

—— camera_image_provider.py

—— camera_image_provider_demo.py
—— cv_color_type.py

—— fiat_image.md

—— fiat_image_attrs_demo.py

— image_gui.py

—— image_to_from_file_qgui.py

—— image_to_from_file_gui_demo.py
— 1image_types.py

—— lut_functions.py

—— lut_qgui.py

—— lut_gui_demo.py

— lut_types.py

— overlay_alpha_image.py

L paris.jpg

— fiat_matplotlib/

—— __init__.py

—— comparison_dash/

—— __init__ .py

L figure_demo_dash.py
—— comparison_streamlit/

—— __init__.py

—— anim_wave_streamlit.py
— figure_demo_streamlit.py
—— fiat_matplotlib.md

—— figure_with_gui.py

— figure_with_gui_demo.py

— fiat_dataframe/

— Readme.md —> fiat_dataframe.md

—— __init__.py

— dataframe_presenter.py

— dataframe_with_gui.py

—— dataframe_with_gui_demo_titanic.py
_— fiat_dataframe.md

— fiat_implot/

—— __init__.py # Simp
— array_types.py

— simple_plot_gui.py

—— simple_plot_gui_demo.py

—— fiat_kits/ # domain specific kits
— Readme.md —> fiat_kits.md
— __init__.py
— fiat_image/ # image widgets (ImageWithGui, LutGui,

Matplotlib widget (FigureWithGui)

Pandas DataFrame widget (DataFrameW:

Plots with ImPlot:
lePlotGui presents 1D/2D arrays with 1

— fiat_ai/ # Artificial Intelligence kit
— __init__.py # (Prompt + Stable Diffusion)

— invoke_sdx1_turbo.py

—— invoke_sdx1_turbo_demo. py

—— prompt.py

—— prompt_with_gui.py

— prompt_with_gui_demo.py

— fiat_kit_skeleton/ # Kit skeleton
—— Readme.md —> fiat_skeleton.md # (a starting point to create new kit:
—— __init__.py
—— fiat_skeleton.md
— mydata.py

—— mydata_presenter.py
— mydata_with_gui.py

— experimental/
—— __init__.py
—— fiat_audio_simple/ # audio processing kit (experimental)
— __init__ .py

—— audio_types.py

—— audio_types_gui.py

— microphone_gui.py

—— microphone_gui_demo.py

—— microphone_io.py

—— sound_wave_player.py

—— sound_wave_player_demo.py

— sound_wave_player_gui.py

— sound_wave_player_gui_demo.py

—— fiat_nodes/ # Present function inside Nodes
— __init__ .py

— function_node_gui.py

—— functions_graph_gui.py

— fiat_utils/ # internal utilities
— __init__ .py

—— docstring_utils.py

—— fiat_attributes_decorator.py

— fiat_math.py

— functional_utils.py

—— lazy_module.py

— print_repeatable_message.py

— registry.py

— str_utils.py

—— fiat_widgets/ # internal widgets
—— __init__ .py

—— fiat_osd.py

— float_widgets.py

— fontawesome6_ctx_utils.py

—— group_panel.py

—— mini_buttons.py

misc_widgets.py
node_separator.py

ribbon_panel.py

— fiat_cli/ # Command Line Interface
— __init__ .py
— fiatlight_cli.py*

—— fiat_doc/ # documentation utilities
— __init_ .py

— code_utils.py

—— make_class_header.py

—— fiat_notebook/ # notebook utilities
—— look_at_code.py

— notebook_utils.py

L— plantuml_magic.py

— py.typed

FunctionWithGui

Introduction

FunctionWithGui is one of the core classes of FiatLight: it wraps a function with a GUI that
presents its inputs and outputs.

e Manual: Read the manual for a detailed guide on how to use it.

e Source code: View its full code online.

Signature

Below, you will find the “signature” of the FunctionWithGui class, with its main attributes and
methods (but not their bodies)

Its full source code is available online.

from fiatlight.fiat_notebook import look_at_code
%look_at_class_header fiatlight.fiat_core.FunctionWithGui

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_core/function_with_gui.py
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_core/function_with_gui.py

class FunctionWithGui:
"""FunctionWithGui: add GUI to a function

"FunctionWithGui® is one of the core classes of FiatLight: it wraps a function v
inputs and its output(s).

Public Members

the name of the function

name: str = ""

#

Behavioral Flags
#

invoke_async: if true, the function shall be called asynchronously
invoke_async: bool = False

invoke_manually: if true, the function will be called only if the user clicks
(if inputs were changed, a "Refresh needed" label will be displayed)
invoke_manually: bool = False

invoke_always_dirty: if true, the function output will always be considered ot
- if invoke_manually is true, the "Refresh needed" label will be displayed
- if invoke_manually is false, the function will be called at each frame

Note: a "live" function is thus a function with invoke_manually=False and inwvc
invoke_always_dirty: bool = False

Optional user documentation to be displayed in the GUI

- doc_display: if True, the doc string is displayed in the GUI (default: F
- doc_is_markdown: if True, the doc string is in Markdown format (default:
- doc_user: the documentation string. If not provided, the function docsti
— doc_show_source: if True, the source code of the function will be displc
doc_display: bool = True

doc_markdown: bool = True

doc_user: str = ""

doc_show_source: bool = False

Internal state GUI

(this function may display a GUI to show the internal state of the function,
and return True if the state has changed, and the function needs to be callec
internal_state_gui: BoolFunction | None = None

#
#
#
internal_state_gui: optional Gui for the internal state of the function
#
#

internal_state_gui_node_compatible:

If True, the internal_state_gui function is incompatible with being presented
(this is due to a limitation of the node editor, which cannot render scrollabl
Note: instead of setting edit_node_compatible to False, you may query

“fiatlight.is_rendering_in_node() ™ to know if you are rendering in a noc
and choose alternative widgets in this case.
internal_state_gui_node_compatible: bool = True

#
Heartbeat

on_heartbeat: optional function that will be called at each frame
(and return True if the function needs to be called to update the output)
on_heartbeat: BoolFunction | None = None

Serialization

save/load_internal_gui_options_from_json (Optional)

Optional serialization and deserialization of the internal state GUI presentat
(i.e. anything that deals with how the GUI is presented, not the data itself)
If provided, these functions will be used to recreate the GUI presentation opi
so that the GUI looks the same when the application is restarted.
save_internal_gui_options_to_json: Callable[[], JsonDict] | None = None
load_internal_gui_options_from_json: Callable[[JsonDict], Nonel | None = None

HHHHRFHHRHR

function_name: str = ''

label: str = "'

invoke_async: bool = False

invoke_manually: bool = False
invoke_always_dirty: bool = False
invoke_is_gui_only: bool = False

doc_display: bool = True

doc_markdown: bool = True

doc_user: str = '!

doc_show_source: bool = False
internal_state_gui: BoolFunction | None = None
internal_state_gui_node_compatible: bool = True
save_internal_gui_options_to_json: Callable[[], JsonDict] | None = None
load_internal_gui_options_from_json: Callable[[JsonDict], Nonel | None = None
on_heartbeat: BoolFunction | None = None
_dirty: bool = True

_f_impl: Callablel[..., Any] | None = None
_inputs_with_gui: List[ParamWithGui[Any]]
_outputs_with_gui: List[OutputWithGuilAny]]
_last_exception_message: Optionall[str] = None
_last_exception_traceback: Optionallstr] = None
_accept_none_as_output: bool = False

class _Construct_Section:

#

Construction

input_with_gui and output_with_gui should be filled soon after construct:
#

pass

def __init_ (self, fn: Callable[..., Any] | None, fn_name: str | None=None, *, ¢
"""Create a FunctionWithGui object, with the given function as implementatic

The function signature is automatically parsed, and the inputs and outputs ¢
with the correct GUI types.

:param fn: the function for which we want to create a FunctionWithGui

Notes:
This function will capture the locals and globals of the caller to be able {
Make sure to call this function *from the module where the function and its

If the function has attributes like invoke_manually or invoke_async, they wi
- if “invoke_async® is True, the function will be called asynchronously
— if “invoke_manually" is True, the function will be called only if the

Advanced parameters:

skokskokokskskokskokokokokokokokokokokok

:param signature_string: a string representing the signature of the functior
used when the function signature cannot be retrieve

pass

class _FiatAttributes_Section:

def

def

def

def

def

def

#
Fiat Attributes
#

pass

handle_fiat_attributes(self, fiat_attributes: dict[str, Any]) —> None:
"""Handle custom attributes for the function"""
pass

set_invoke_live(self) —> None:
"""Set flags to make this a live function (called automatically at each fran
pass

set_invoke_manually(self) —> None:
"""Set flags to make this a function that needs to be called manually"""
pass

set_invoke_manually_io(self) —> None:

""'Set flags to make this a IO function that needs to be called manually
and that is always considered dirty, because it depends on an external devic
or state (and likely has no input)"""

pass

is_invoke_manually_io(self) -> bool:
""MReturn True if the function is an IO function that needs to be called mar
pass

set_invoke_async(self) —> None:
"""Set flags to make this a function that is called asynchronously"""
pass

def is_live(self) —> bool:
"""Return True if the function is live"""
pass

class _Utilities_Section:
#
Utilities
#

pass

def call_for_tests(self, skparams: Any) —> Any:
""MCall the function with the given parameters, for testing purposes"""
pass

def is_dirty(self) —> bool:
"""Return True if the function needs to be called, because the inputs have ¢
pass

def set_dirty(self) —> None:
"""Set the function as dirty."""
pass

def get_last_exception_message(self) —> str | None:
"""Return the last exception message, if any"""
pass

def shall_display_refresh_needed_label(self) —> bool:
"""Return True if the "Refresh needed" label should be displayed
i.e. if the function is dirty and invoke_manually is True"""
pass

def __str__(self) —> str:
pass

class _Inputs_Section:
#
Inputs, aka parameters
#

pass

def nb_inputs(self) —> int:
"""Return the number of inputs of the function"""
pass

def all_inputs_names(self) —> List[str]:
"""Return the names of all the inputs of the function"""
pass

def input(self, name: str) —-> AnyDataWithGui[Any]:

"""Return the input with the given name as a AnyDataWithGuil[Any]
The inner type of the returned value is Any in this case.
You may have to cast it to the correct type, if you rely on type hints.

Use input_as() if you want to get the input with the correct type.

pass

def input_as(self, name: str, gui_type: TypelGuiTypel) —> GuiType:
"""Return the input with the given name as a GuiType

GuiType can be any descendant of AnyDataWithGui, like
fiatlight.fiat_core.IntWithGui, fiatlight.fiat_core.FloatWithGui, etc.

Raises a ValueError if the input is not found, and a TypeError if the input

pass

def input_of_idx(self, idx: int) —> ParamWithGuil[Any]:
"""Return the input with the given index as a ParamWithGui[Any]"""
pass

def input_of_idx_as(self, idx: int, gqui_type: Typel[GuiTypel) —-> GuiType:
"""Return the input with the given index as a GuiType"""
pass

def inputs_guis(self) —> List[AnyDataWithGui[Any]]:
pass

def set_input_gui(self, name: str, gui: AnyDataWithGui[Any]) —> None:
"""Set the GUI for the input with the given name"""
pass

def has_param(self, name: str) —> bool:
"""Return True if the function has a parameter with the given name"""
pass

def param(self, name: str) —-> ParamWithGuil[Any]:
"""Return the input with the given name as a ParamWithGui[Any]"""
pass

def param_gui(self, name: str) —-> AnyDataWithGui[Any]:
"""Return the input with the given name as a AnyDataWithGui[Any]"""
pass

def set_param_value(self, name: str, value: Any) —> None:
"""Set the value of the input with the given name
This is useful to set the value of an input programmatically, for example ir

pass

def toggle_expand_inputs(self) —> None:
pass

def toggle_expand_outputs(self) -> None:
pass

class _Outputs_Section:
#
Outputs
#

pass

def nb_outputs(self) —> int:
"""Return the number of outputs of the function.
A function typically has @ or 1 output, but it can have more if it returns e

pass

def output(self, output_idx: int=0) —-> AnyDataWithGuil[Any]:
"""Return the output with the given index as a AnyDataWithGuil[Any]
The inner type of the returned value is Any in this case.
You may have to cast it to the correct type, if you rely on type hints.

Use output_as() if you want to get the output with the correct type.

pass

def output_as(self, output_idx: int, gqui_type: TypelGuiTypel) —> GuiType:
"""Return the output with the given index as a GuiType

GuiType can be any descendant of AnyDataWithGui, like
fiatlight.fiat_core.IntWithGui, fiatlight.fiat_core.FloatWithGui, etc.

Raises a ValueError if the output is not found, and a TypeError if the outpt

pass

def outputs_guis(self) —> List[AnyDataWithGuilAny]]:
pass

class _Invoke_Section:
#
Invoke the function
This is the heart of fiatlight: it calls the function with the current ing
and stores the result in the outputs, stores the exception if any, etc.
#

pass

@final

def has_bad_inputs(self) —> bool:
pass

@final

def invoke(self) —-> None:

def

“""“Invoke the function with the current inputs, and store the result in the

Will call the function if:
- the inputs have changed since the last call
— the function is dirty
- none of the inputs is an error or unspecified

If an exception is raised, the outputs will be set to ErrorValue, and the e

If the function returned None and the output is not allowed to be None, a V:
(this is inferred from the function signature)

pass

invoke_gui(self) —> None:
pass

@final

def

def

def

_invoke_imp1l(self) —> None:
pass

on_exit(self) —> None:
"""Called when the application is exiting
Will call the on_exit callback of all the inputs and outputs

pass

_can_emit_none_output(self) —> bool:

"""Return True if the function can emit None as output

i.e.

— either the function has no output

- or the output can be None (i.e. the signature looks like ‘def f() —> int |
if the function has multiple outputs, we consider that it can not emit None

pass

class _Serialize_Section:

def

def

#
Save and load to json

Here, we only save the options that the user entered manually in the GUI:
- the options of the inputs

- the options of the outputs

#

pass

save_user_inputs_to_json(self) —> JsonDict:
pass

load_user_inputs_from_json(self, json_data: JsonDict) —> None:
pass

def save_gui_options_to_json(self) —> JsonDict:
"""Save the GUI options to a JSON file
(i.e. any presentation options of the inputs and outputs, as well as of

pass

def load_gui_options_from_json(self, json_data: JsonDict) -> None:
"""Load the GUI options from a JSON file"""
pass

class _Doc_Section:
pass

def get_function_doc(self) —> FunctionWithGuiDoc:
pass

def _get_function_userdoc(self) —> str | None:
"""Return the user documentation of the function"""
pass

def _get_function_docstring(self) —> str | None:
""“"Return the docstring of the function"""
pass

def _get_function_source_code(self) —> str | None:

"""Return the source code of the function"""
pass

Architecture

Below is a PlantUML diagram showing the architecture of the fiat_core module. See the
architecture page for the full architecture diagrams.

from fiatlight.fiat_notebook import plantuml_magic
%splantuml_include class_diagrams/fiat_core.puml

the

fiat_core

@ FunctionsGraph

A graph of FunctionNodes

o functions_nodes
o functions_nodes_links

many

@ FunctionNode

many

o function_with_gui: FunctionWithGui
o output_links: list[FunctionNodeLink]
o input_links: list{FunctionNodeLink]

@ FunctionNodeLink

o src_function_node: FunctionNode
o src_output_idx: int

o dst_function_node: FunctionNode
o dst_input_name: str

many

several

This is the core of fiatlight.

It is a set of classes that can be used to add a GUI
to any data, function or graph of functions.

It does depend on ImGui, but not on
imgui-node-editor.

(© FunctionWithGui

Wraps a function with a GUI

o constructor(f)
(will fill _inputs_with_gui and _outputs_with_gui,
attempting to guess the types)

o invoke()

o name: str =

Linked function
o _f_impl: Callablel..., Any] | None = None

Members linked to the function
o _inputs_with_gui: List[ParamWithGui[Any]]
o _outputs_with_gui: List[OutputWithGui[Any]]

o0 _last_exception_message: Optional[str] = None
0 _last_exception_traceback: Optional[str] = None
o _dirty: bool = True

Behavioral Flags
o invoke_async: bool = False
o invoke_manually: bool = False
o invoke_always_dirty: bool = False

Optional callbacks
o internal_state_gui: BoolFunction | None = None
o on_heartbeat: BoolFunction | None = None

1 or many

«DataType»
ParamWithGui

name: str

data_with_gui: AnyDataWithGui[DataType]
default_value: DataType | Unspecified

@ «DataType»
OutputWithGui

data_with_gui: AnyDataWithGui[DataType]

@ «DataType»
AnyDataWithGui

a class to wrap any data with a GUI

o _value: DataType | Unspecified | Error
o callbacks: AnyDataGuiCallbacks[DataType]

o save_to_json() / load_from_json()

«DataTvpe» W

L) AnyDataGuiCallbacks

a class that stores callbacks for AnyDataWithGui
(most of them are optional)

o edit : BoolFunction (custom widgets for edition)
o present_custom: VoidFunction (for presentation)
o etc.

AnyDataWithGui

Introduction

AnyDataWithGui associate a GUI to any type, with associated GUI callbacks, allowing for custom
rendering, editing, serialization, and event handling within the Fiatlight framework.

It uses callbacks which are stored inside AnyDataGuiCallback.

Signature

Below, we display the class header, i.e., the class without its methods bodies, to give a quick

overview of its structure.

You can see its full code at AnyDataWithGui.

from fiatlight.fiat_notebook import look_at_code
%look_at_class_header fiatlight.fiat_core.AnyDataWithGui

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_core/any_data_with_gui.py

class AnyDataWithGui(Generic[DataType]):
"""AnyDataWithGui: a GUI associated to a type.

AnyDataWithGuil[DataTypel

This class manages data of any type with associated GUI callbacks, allowing for
serialization, and event handling within the Fiatlight framework.

Members:
The type of the data, e.g. int, str, typing.List[int], typing.Tuplelint, strl,
_type: TypelDataTypel

The value of the data - can be a DataType, Unspecified, or Error
It is accessed through the value property, which triggers the on_change callbz
_value: DataType | Unspecified | Error = UnspecifiedValue

Callbacks for the GUI

This is the heart of FiatLight: the GUI is defined by the callbacks.
Think of them as __dunder__ methods for the GUI.

callbacks: AnyDataGuiCallbacks[DataTypel

If True, the value can be None. This is useful when the data is optional.

Otherwise, any None value will be considered as an Error.

Note: when using Optionall[any registered type], this flag is automatically set
can_be_none: bool = False

Property:

Custom attributes that can be set by the user, to give hints to the GUI.
For example, with this function declaration,

def f(x: int, y: int) —> int:
return x + vy
f.x__range = (0, 10)

fiat_attributes["range"] will be (@, 10) for the parameter x.
@property
fiat_attributes —> dict[str, Any]

_type: Typel[DataType] | None

_value: DataType | Unspecified | Error | Invalid[DataType]l = UnspecifiedValue
callbacks: AnyDataGuiCallbacks[DataTypel

can_be_none: bool = False

_fiat_attributes: FiatAttributes

_expanded: bool = False

_can_set_unspecified_or_default: bool = False

label: str | None = None

label_color: ImVec4 | None = None

tooltip: str | None = None
status_tooltip: str | None

None

class CollapseOrExpand(Enum):

collapse = 'Collapse All'
expand = 'Expand All'

class PresentOrEdit(Enum):
present = 'View'
edit = 'Edit'

class _Init_Section:
#
Initialization
#

pass

def __init_ (self, data_type: Typel[DataTypel | None) —> None:
"""Tnitialize the AnyDataWithGui with a type, an unspecified value, and no ¢
pass

class _Value_Section:
#
Value getter and setter + get_actual_value (which returns a Dat
#

pass

@property
def value(self) —> DataType | Unspecified | Error | Invalid[DataTypel:
"""The value of the data, accessed through the value property.
Warning: it might be an instance of "Unspecified’ (user did not enter any ve

pass

@value.setter

def value(self, new_value: DataType | Unspecified | Error | Invalid[DataTypel) -
"""Set the value of the data. This triggers the on_change callback (if set)'
pass

def get_actual_value(self) -> DataType:
"""Returns the actual value of the data, or raises an exception if the value
When we are inside a callback, we can be sure that the value is of the corre
instead of accessing the value directly and checking for Unspecified or Errc

pass

def get_actual_or_invalid_value(self) —> DataType:
"""Returns the actual value of the data, or raises an exception if the value
pass

class _CustomAttributes_Section:

#
Custom Attributes

#

pass

@staticmethod

def possible_fiat_attributes() —-> PossibleFiatAttributes | None:
"""Return the possible custom attributes for this type, if available.
Should be overridden in subclasses, when custom attributes are available.

It is strongly advised to return a class variable, or a global variable
to avoid creating a new instance each time this method is called.

pass

@final
def possible_fiat_attributes_with_generic(self) —> tuple[PossibleFiatAttributes
pass

@property
def fiat_attributes(self) —-> FiatAttributes:
pass

def merge_fiat_attributes(self, fiat_attrs: FiatAttributes) -> None:
"""Merge custom attributes with the existing ones"""
pass

def _handle_generic_attrs(self) —> None:
"""Handle generic custom attributes"""
pass

@staticmethod

def propagate_label_and_tooltip(a: 'AnyDataWithGuil[Any]', b: 'AnyDataWithGuil[Any
"""Propagate label and tooltip from one AnyDataWithGui to another
Meant to be used with CompositeGui

pass

class _Gui_Section:

#

Gui sections

(Can also be used outside a function Node)
#

def sub_items_can_collapse(self, _present_or_edit: PresentOrEdit) —> bool:
"""Overwrite this in derived classes if they provide multiple sub-items thai
pass

def sub_items_collapse_or_expand(self, _collapse_or_expand: CollapseOrExpand) -:
"""Overwrite this in derived classes if they provide multiple sub-items that
pass

def sub_items_will_collapse_or_expand(self, _present_or_edit: PresentOrEdit) —>

def

def

def

def

def

def

def

def

def

def

def

def

def

def

def

def

def

"""Overwrite this in derived classes if they provide multiple sub-items thai
pass

_show_collapse_sub_items_buttons(self, present_or_edit: PresentOrEdit) —> Nc
pass

can_show_present_popup(self) —> bool:
pass

can_show_edit_popup(self) —> bool:
pass

_show_collapse_button(self) —> None:
pass

_show_copy_to_clipboard_button(self) -> None:
pass

can_collapse_present(self) —> bool:
pass

can_collapse_edit(self) —> bool:
pass

can_edit_on_header_line(self) —> bool:
pass

can_present_on_header_line(self) —> bool:
pass

_can_edit_on_next_lines_if_expanded(self) —> bool:
pass

_can_present_on_next_lines_if_expanded(self) —> bool:
pass

_is_editing_on_next_lines(self) —> bool:
pass

_is_presenting_on_next_lines(self) —> bool:
pass

_popup_window_name(self, params: GuiHeaderLineParams[DataType], present_or_e
pass

_gui_present_header_line(self, params: GuiHeaderLineParams[DataTypel) —> Nor
"""Present the value as a string in one line, or as a widget if it fits on ¢
pass

_gui_edit_header_line(self, params: GuiHeaderLineParams[DataType]) -> bool:
pass

_show_set_unspecified_or_default_button(self) —> bool:
pass

def

def

def

def

def

def

_gui_edit_next_lines(self, in_popup: bool) —-> bool:
pass

_gui_present_next_lines(self, in_popup: bool) —-> None:
pass

gui_present_customizable(self, params: GuiHeaderLineParams[DataTypel) —> Nor
"""Present the value using either the present callback or the default str cc
May present on one line (if possible) or on multiple lines with an expand bt

pass

gui_present(self) —> None:
pass

gui_edit_customizable(self, params: GuiHeaderLineParams[DataTypel) -> bool:
""MCall the edit callback. Returns True if the value has changed
May edit on one line (if possible) or on multiple lines with an expand buttc

pass

gui_edit(self) —> bool:
pass

class _Callbacks_Section:

#
Callbacks sections
#

def set_edit_callback(self, edit_callback: DataEditFunction[DataTypel) —> None:
"""Helper function to set the edit callback from a free function"""
pass

def set_present_callback(self, present_callback: DataPresentFunction[DataTypel],
"""Helper function to set the present custom callback from a free function"
pass

def add_validate_value_callback(self, cb: Callable[[DataTypel, Nonel) —> None:
pass

def _Serialization_Section(self) —> None:
#
Serialization and deserialization
#
pass

@final

def call_save_to_dict(self, value: DataType | Unspecified | Error | Invalid[Date

"""Serialize the value to a dictionary

Will call the save_to_dict callback if set, otherwise will use the default ¢
A default serialization is available for primitive types, tuples, and Pydant

(This is how fiatlight saves the data to a JSON file)

Do not override these methods in descendant classes!

pass

@final

def call_load_from_dict(self, json_data: JsonDict) —> DataType | Unspecified |
"""Deserialize the value from a dictionary
Do not override these methods in descendant classes!

pass

@final
def call_save_gui_options_to_json(self) —> JsonDict:
pass

@final
def call_load_gui_options_from_json(self, json_data: JsonDict) —> None:
pass

class _Utilities_Section:
#
Utilities
#

def can_construct_default_value(self) —> bool:
pass

def construct_default_value(self) —> DataType:
pass

def datatype_qualified_name(self) —> str:
pass

def datatype_basename(self) —> str:
pass

def datatype_base_and_qualified_name(self) —> str:
pass

def datatype_value_to_str(self, value: DataType) —> str:
"""Convert the value to a string
Uses either the present_str callback, or the default str conversion

pass

def datatype_value_to_clipboard_str(self, value: DataType) —> str:

"""Convert the value to a string for the clipboard
Uses either the clipboard_copy_str callback, or the default str conversion

pass
def docstring_first_line(self) —> str | None:

"""Return the first line of the docstring, if available"""
pass

Architecture

Below is a PlantUML diagram showing the architecture of the fiat_core module. See the

architecture page for the full architecture diagrams.

from fiatlight.fiat_notebook import plantuml_magic
%splantuml_include class_diagrams/fiat_core.puml

fiat_core

@ FunctionsGraph

A graph of FunctionNodes

o functions_nodes
o functions_nodes_links

many

@ FunctionNode

many

o function_with_gui: FunctionWithGui
o output_links: list[FunctionNodeLink]
o input_links: list{FunctionNodeLink]

@ FunctionNodeLink

o src_function_node: FunctionNode
o src_output_idx: int

o dst_function_node: FunctionNode
o dst_input_name: str

many

several

This is the core of fiatlight.

It is a set of classes that can be used to add a GUI
to any data, function or graph of functions.

It does depend on ImGui, but not on
imgui-node-editor.

(© FunctionWithGui

Wraps a function with a GUI

o constructor(f)
(will fill _inputs_with_gui and _outputs_with_gui,
attempting to guess the types)

o invoke()

o name: str =

Linked function
o _f_impl: Callablel..., Any] | None = None

Members linked to the function
o _inputs_with_gui: List[ParamWithGui[Any]]
o _outputs_with_gui: List[OutputWithGui[Any]]

o0 _last_exception_message: Optional[str] = None
0 _last_exception_traceback: Optional[str] = None
o _dirty: bool = True

Behavioral Flags
o invoke_async: bool = False
o invoke_manually: bool = False
o invoke_always_dirty: bool = False

Optional callbacks
o internal_state_gui: BoolFunction | None = None
o on_heartbeat: BoolFunction | None = None

1 or many

«DataType»
ParamWithGui

name: str

data_with_gui: AnyDataWithGui[DataType]
default_value: DataType | Unspecified

@ «DataType»
OutputWithGui

data_with_gui: AnyDataWithGui[DataType]

@ «DataType»
AnyDataWithGui

a class to wrap any data with a GUI

o _value: DataType | Unspecified | Error
o callbacks: AnyDataGuiCallbacks[DataType]

o save_to_json() / load_from_json()

«DataTvpe» W

&) AnyDataGuiCallbacks

a class that stores callbacks for AnyDataWithGui
(most of them are optional)

o edit : BoolFunction (custom widgets for edition)
o present_custom: VoidFunction (for presentation)
o etc.

AnyDataGuiCallbacks

Introduction

AnyDataGuiCallbacks provides a set of callbacks that define how a particular data type should be
presented, edited, and managed within the Fiatlight GUI framework.

These callbacks are used by AnyDataWithGui.

Source

Below, is the class source, which you can also see online.

from fiatlight.fiat_notebook import look_at_code
%look_at_python_code fiatlight.fiat_core.AnyDataGuiCallbacks

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_core/any_data_gui_callbacks.py

class AnyDataGuiCallbacks(Generic[DataTypel):
""AnyDataGuiCallbacks: Collection of callbacks for a given type

AnyDataGuiCallbacks

This class provides a set of callbacks that define how a particular data type st
presented, edited, and managed within the Fiatlight GUI framework.

These callbacks are used by [AnyDataWithGui] (any_data_with_gui).

Presentation

present_str: (Mandatory if str() is not enough, optional otherwise)
Provide a function that returns a short string info about the data content
This string will be presented as a short description of the data in the GUI

If possible, it should be short enough to fit in a single line inside a node |
If the result string is too long, or occupies more than one line, it will be 1
(and the rest of the string will be displayed in a tooltip)

For example, on complex types such as images, return something like "128x128x:
If not provided, the data will be presented using str()
resent_str: Callable[[DataTypel, str] | None = None

present: (Optional)

a function that provides a more complex, custom GUI representation of the datc
It will be presented when a function param is in "expanded" mode, and can use
If not provided, the data will be presented using present_str

Note: Some widgets cannot be presented in a Node (e.g., a multiline text input
You can query " fiatlight.is_rendering_in_node() " to know if you are renc
Also, when inside a Node, you may want to render a smaller version, to ¢
(as opposed to rendering a larger version in a detached window).

resent: Callable[[DataTypel, None] | None = None

present_collapsible:
Set this to False if your custom presentation is small and fits in one line
(i.e. it does not need to be collapsible)
If True, the gui presentation will either:
- show present_str + an expand button
- show the custom presentation + a collapse button
resent_collapsible: bool = True

T HHHHRHFR

present_node_compatible: (Optional: set to False if using input_text_multiline
If True, the present function is incompatible with being presented in a node |
of the node editor, which cannot render scrollable widgets)

Note: instead of setting edit_node_compatible to False, you may query

“fiatlight.is_rendering_in_node() ™ to know if you are rendering in a noc
and choose alternative widgets in this case.

present_node_compatible: bool = True

H

Edition

#

edit: (Mandatory if edition is required)

Provide a function that presents an editable interface for the data, and retur
(True, new_value) if changed

(False, old_value) if not changed

If not provided, the data will be presented as read-only

Note: Some widgets cannot be presented in a Node (e.g., a multiline text input
You can query " fiatlight.is_rendering_in_node()" to know if you are renc

edit: Callablel[[DataTypel, tuplel[bool, DataTypell | None = None

edit_collapsible:

Set this to False if your custom edition is small, and does not need to be col
If True, the gui edition will either:

- show present_str + an expand button

— show the custom edition + a collapse button

edit_collapsible: bool = True

edit_node_compatible: (Optional: set to False if using input_text_multiline, ¢
If True, the edit function is incompatible with being presented in a node (th:
of the node editor, which cannot render scrollable widgets)

Note: instead of setting edit_node_compatible to False, you may query

“fiatlight.is_rendering_in_node() to know if you are rendering in a noc
and choose alternative widgets in this case.

edit_node_compatible: bool = True

#

Default value
#
default value provider (Needed only for a type without default constructor)
this function will be called to provide a default value if needed
default_value_provider: Callable[[], DataTypel | None = None

#

Events callbacks

#
#
on_change (Optional)

if provided, this function will be called when the value changes.

Can be used in more advanced cases,

for example when “present” has an internal cache that needs to be updated,
or other side effects.

on_change: Callable[[DataTypel, Nonel | None = None

validate_value (Optional)

if provided, these functions will be called when the user tries to set a value
They should return a DataValidationResult.ok() if the value is valid,

or a DataValidationResult.error() with an error message.

validate_value: list[Callable[[DataType], DataValidationResult]]

on_exit (Optional)
if provided, this function will be called when the application is closed.

Used in more advanced cases, typically when some resources need to be releasec
on_exit: VoidFunction | None = None

on_heartbeat: (Optional)

If provided, this function will be called at each heartbeat of the function nc
(before the value is drawn). It should return True if any change has been made
on_heartbeat: BoolFunction | None = None

on_fiat_attributes_changed (Optional)

if provided, this function will be called when the custom attributes of the d:
Used in more advanced cases, when the data presentation depends on custom atti
on_fiat_attributes_changed: Callable[[FiatAttributes], None] | None = None

#

Serialization and deserialization

#

0f the GUI presentation options (not the data itself)

#

save/load_gui_options_from_json (Optional)

Optional serialization and deserialization of the GUI presentation options

(i.e. anything that deals with how the data is presented in the GUI, *not the
If provided, these functions will be used to recreate the GUI presentation opt
so that the GUI looks the same when the application is restarted.

save_gui_options_to_json: Callable[[], JsonDict] | None = None
load_gui_options_from_json: Callable[[JsonDict], Nonel | None = None

0f the data itself

#
#
Optional serialization and deserialization functions for DataType

If provided, these functions will be used to serialize and deserialize the dat
If not provided, "value" will be serialized as a dict of its _ _dict__ attribut
or as a json string (for int, float, str, bool, and None)

save_to_dict: Callable[[DataTypel, JsonDict] | None = None

load_from_dict: Callable[[JsonDict], DataTypel | None = None

#

Clipboard
#
clipboard_copy_str (Optional)

if provided, this function will be called when the value is copied to the clij
Used in more advanced cases, when the data is not a simple string, or when pre
clipboard_copy_str: Callable[[DataTypel, str] | None = None

clipboard_copy_possible (Optional)

True by default

If False, the user can not copy the data to the clipboard
clipboard_copy_possible: bool = True

#

def __init__ (self) —> None:
self.validate_value = []

Architecture

Below is a PlantUML diagram showing the architecture of the fiat core module. See the

architecture page for the full architecture diagrams.

from fiatlight.fiat_notebook import plantuml_magic
%splantuml_include class_diagrams/fiat_core.puml

fiat_core

@ FunctionsGraph

A graph of FunctionNodes

o functions_nodes
o functions_nodes_links

many

@ FunctionNode

many

o function_with_gui: FunctionWithGui
o output_links: list[FunctionNodeLink]
o input_links: list{FunctionNodeLink]

@ FunctionNodeLink

o src_function_node: FunctionNode
o src_output_idx: int

o dst_function_node: FunctionNode
o dst_input_name: str

many

several

This is the core of fiatlight.

It is a set of classes that can be used to add a GUI
to any data, function or graph of functions.

It does depend on ImGui, but not on
imgui-node-editor.

(© FunctionWithGui

Wraps a function with a GUI

o constructor(f)
(will fill _inputs_with_gui and _outputs_with_gui,
attempting to guess the types)

o invoke()

o name: str =

Linked function
o _f_impl: Callablel..., Any] | None = None

Members linked to the function
o _inputs_with_gui: List[ParamWithGui[Any]]
o _outputs_with_gui: List[OutputWithGui[Any]]

o0 _last_exception_message: Optional[str] = None
0 _last_exception_traceback: Optional[str] = None
o _dirty: bool = True

Behavioral Flags
o invoke_async: bool = False
o invoke_manually: bool = False
o invoke_always_dirty: bool = False

Optional callbacks
o internal_state_gui: BoolFunction | None = None
o on_heartbeat: BoolFunction | None = None

1 or many

«DataType»
ParamWithGui

name: str

data_with_gui: AnyDataWithGui[DataType]
default_value: DataType | Unspecified

@ «DataType»
OutputWithGui

data_with_gui: AnyDataWithGui[DataType]

@ «DataType»
AnyDataWithGui

a class to wrap any data with a GUI

o _value: DataType | Unspecified | Error
o callbacks: AnyDataGuiCallbacks[DataType]

o save_to_json() / load_from_json()

«DataTvpe» W

L) AnyDataGuiCallbacks

a class that stores callbacks for AnyDataWithGui
(most of them are optional)

o edit : BoolFunction (custom widgets for edition)
o present_custom: VoidFunction (for presentation)
o etc.

FunctionsGraph

FunctionsGraph is one of the core classes of FiatLight: it represents a graph of functions, where
the output of one function can be linked to the input of another function.

e Source: see its full code online

e Manual: FunctionsGraph API

Signature

Below, you will find the “signature” of the FunctionsGraph class, with its main attributes and
methods (but not their bodies)

Its full source code is & available online.

from fiatlight.fiat_notebook import look_at_code
%look_at_class_header fiatlight.fiat_core.FunctionsGraph

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_core/functions_graph.py
file:///Users/pascal/dvp/OpenSource/ImGuiWork/_Bundle/fiatlight/src/python/fiatlight/doc/_build/html/_downloads/c0332d466fe772951b8cd878a27c3170/functions_graph.py

class FunctionsGraph:
"""A graph of FunctionNodes

"FunctionsGraph® is one of the core classes of FiatLight: it represents a grapt
where the output of one function can be linked to the input of another functior

See its [full code](../fiat_core/functions_graph.py).

It contains a graph of FunctionNodes modeled as a list of FunctionNode and a lit
(which are the links between the outputs of a FunctionNode and the inputs of anc

This class only stores the data representation of the graph, and does not deal v
(for this, see FunctionGraphGui)

This class is not meant to be instantiated directly. Use the factory methods inc

Public Members

the list of FunctionNode in the graph
functions_nodes: list[FunctionNodel

the list of links between the FunctionNode
functions_nodes_links: list[FunctionNodelLink]

functions_nodes: list[FunctionNodel]
functions_nodes_links: list[FunctionNodelLink]
_secret_key: str = 'FunctionsGraph'

class _Construction_Section:
#

Construction (Empty)
#

pass

def __init_ (self, secret_key: str='FunctionsGraph') -> None:
"""This class should not be instantiated directly. Use the factory methods :
pass

@staticmethod

def create_empty() —> 'FunctionsGraph':
"""Create an empty FunctionsGraph"""
pass

class _Public_API_Add_Function_Section:

#

Public API / Add functions

Notes:

#
#
#
#
You can add either Functions or FunctionWithGui

- If f is a FunctionWithGui, it will be added as is

- If f is a standard function:

- it will be wrapped in a FunctionWithGui

- the function signature *must* mention the types of the parametel
#

pass

@staticmethod

def from_function(f: Function | FunctionWithGui) —> 'FunctionsGraph':
"""Create a FunctionsGraph from a single function, either a standard functic
pass

@staticmethod

def from_function_composition(functions: Sequence[Function | FunctionWithGui]) -
"""Create a FunctionsGraph from a list of functions that will be chained toc
i.e. the output[@] of one function will be the input[@] of the next functior

pass

def add_function_composition(self, functions: Sequence[Function | FunctionWithGt
""YAdd a list of functions that will be chained together"""
pass

def add_function(self, f: Function | FunctionWithGui) -> FunctionNode:
"""Add a function to the graph. It will not be linked to any other function.
pass

def add_gui_node(self, gui_function: GuiFunctionWithInputs, label: str | None=Nc
pass

def add_task_node(self, task_function: GuiFunctionWithInputs, label: str | None:
pass

def add_markdown_node(self, md_string: str, label: str='Documentation', text_wic
pass

class _Private_API_Add_Function_Section:

#
Private API / Add functions
#

pass

def _add_function_with_gui(self, f_gui: FunctionWithGui) -> FunctionNode:
pass

def _add_function(self, f: Function) -> FunctionNode:
pass

@staticmethod
def _create_from_function_composition(functions: Sequence[Function | FunctionWiit
"""Create a FunctionsGraph from a list of PureFunctions([InputTypel —> Outpt

* They should all be pure functions
* The output[@] of one should be the input[@] of the next

pass

class _Graph_Manipulation_Section:

def

def

def

def

def

def

def

def

def

def

#
Graph manipulation
#

pass

_can_add_link(self, src_function_node: FunctionNode, dst_function_node: Func
"""Check if a link can be added between two functions. (prlvate)""“
pass

_add_link_from_function_nodes(self, src_function_node: FunctionNode, dst_fur
"""Add a link between two functions nodes (prlvate)"""
pass

add_link(self, src_function: str | Function | FunctionWithGui, dst_function:
""YAdd a link between two functions, which are identified by their xuniquex

If a graph reuses several times the same function "f",
the unique names for this functions will be "f_1", "f_2", "f_3", etc.

pass

merge_graph(self, other: 'FunctionsGraph') —> None:
"""Merge another FunctionsGraph into this one"""
pass

function_with_gui_of_name(self, name: str | None=None) —> FunctionWithGui:
"""Get the function with the given unique name"""
pass

_would_add_cycle(self, new_link: FunctionNodelLink) —> bool:

"""Check if adding a link would create a cycle (private)"""
pass

has_cycle(self) —> bool:
"""Returns True if the graph has a cycle"""
pass

_has_cycle_from_node(self, fn: FunctionNode, path: Set[FunctionNode] | None:

"""Check if there is a cycle starting from a given node (private)"""
pass

_remove_link(self, link: FunctionNodeLink) -> None:

"""Remove a link between two functions (private)"""
pass

_remove_function_node(self, function_node: FunctionNode) -> None:

"""Remove a function node from the graph (private)"""
pass

class _Utilities_Section:

def

def

def

def

def

#
Utilities
#

pass

function_node_unique_name(self, function_node: FunctionNode) —> str:
"""Return the unique name of a function node:

If a graph reuses several times the same function "f",

the unique names for this functions will be "f_1", "f_2", "f_3", etc.

pass

_function_node_with_name_or_is_function(self, name_or_function: str | Funct:
"""Get the function node with the given name or function"""

pass

_function_node_with_unique_name(self, function_name: str) —> FunctionNode:
""'Get the function with the unique name"""

pass

all_function_nodes_with_unique_names(self) —> Dict[str, FunctionNode]:

"""Return a dict of all the function nodes, with their unique names as keys
pass

shall_display_refresh_needed_label(self) —> bool:

"""Returns True if any function node shall display a "Refresh needed" label'
pass

class _Serialization_Section:

def

def

#

Serialization

Note: save_gui_options_to_json() and load_gui_options_from_json()
are intentionally not implemented here

See FunctionsGraphGui (which does deals with the GUI)

#

pass

save_user_inputs_to_json(self) —> JsonDict:

"""'Saves the user inputs, i.e. the functions params that are editable in the
(this excludes the params that are set by the links between the functions)"
pass

load_user_inputs_from_json(self, json_data: JsonDict) —> None:
"""Restores the user inputs from a json dict"""
pass

def save_graph_composition_to_json(self) —-> JsonDict:
"""'Saves the graph composition to a json dict.
Only used when the graph composition is editable.

pass
def load_graph_composition_from_json(self, json_data: JsonDict, function_factory

"""Loads the graph composition from a json dict."""
pass

Architecture

Below is a PlantUML diagram showing the architecture of the fiat_core module. See the
architecture page for the full architecture diagrams.

from fiatlight.fiat_notebook import plantuml_magic
%plantuml_include class_diagrams/fiat_core.puml

fiat_core

@ FunctionsGraph

A graph of FunctionNodes

o functions_nodes
o functions_nodes_links

many

@ FunctionNode

many

o function_with_gui: FunctionWithGui
o output_links: list[FunctionNodeLink]
o input_links: list{FunctionNodeLink]

@ FunctionNodeLink

o src_function_node: FunctionNode
o src_output_idx: int

o dst_function_node: FunctionNode
o dst_input_name: str

many

several

This is the core of fiatlight.

It is a set of classes that can be used to add a GUI
to any data, function or graph of functions.

It does depend on ImGui, but not on
imgui-node-editor.

(© FunctionWithGui

Wraps a function with a GUI

o constructor(f)
(will fill _inputs_with_gui and _outputs_with_gui,
attempting to guess the types)

o invoke()

o name: str =

Linked function
o _f_impl: Callablel..., Any] | None = None

Members linked to the function
o _inputs_with_gui: List[ParamWithGui[Any]]
o _outputs_with_gui: List[OutputWithGui[Any]]

o0 _last_exception_message: Optional[str] = None
0 _last_exception_traceback: Optional[str] = None
o _dirty: bool = True

Behavioral Flags
o invoke_async: bool = False
o invoke_manually: bool = False
o invoke_always_dirty: bool = False

Optional callbacks
o internal_state_gui: BoolFunction | None = None
o on_heartbeat: BoolFunction | None = None

1 or many

«DataType»
ParamWithGui

name: str

data_with_gui: AnyDataWithGui[DataType]
default_value: DataType | Unspecified

@ «DataType»
OutputWithGui

data_with_gui: AnyDataWithGui[DataType]

@ «DataType»
AnyDataWithGui

a class to wrap any data with a GUI

o _value: DataType | Unspecified | Error
o callbacks: AnyDataGuiCallbacks[DataType]

o save_to_json() / load_from_json()

«DataTvpe» W

&) AnyDataGuiCallbacks

a class that stores callbacks for AnyDataWithGui
(most of them are optional)

o edit : BoolFunction (custom widgets for edition)
o present_custom: VoidFunction (for presentation)
o etc.

Fiatlight Kits
Fiatlight offers several kits adapted to different domains.

e fiat_image : advanced image widget

o fiat_matplotlib : widget to view matplotlib plots (zoomable)

e fiat dataframe : widget to explore pandas dataframes

e fiat_implot : widget to explore 1D and 2D numpy arrays with ImPlot

flat_image: advanced image widget

Fiatlight provides an advanced image viewer and analyzer which enables to zoom, pan, look at pixel
values and sync the zoom across images.

Example

from fiatlight.fiat_kits.fiat_image import fiat_image_attrs_demo
fiat_image_attrs_demo.main()

https://github.com/epezent/implot

e Inthe "show_image" output, the options panel was opened

e The “"show_image_channels" output shows the image channels, and it zoom/pan is linked
to “show_image"

* The “"show_image_different_zoom_key" image has a different zoom key, and the
zoom/pan is not linked to “show_image”. It also zoomed at a high-level, so that pixel
values are displayed.

e the "show_image_only_display” image is displayed, and cannot be zoomed or panned (the
widget may be resized however)

Fiat attributes available for the ImageWithGui widget

The image widget provided with fiat_image is extremely customizable. Here is a list of all the
possible customizations options:

%%bash
fiatlight gui ImageWithGui

GUI type: ImageWithGui

A highly sophisticated GUI for displaying and analysing images. Zoom/Pan, show chi

Available custom attributes for fiat_image.ImageWithGui:

| Name | Type | Default | Explanation

+ + + +

| | | | *xMain attributs
| only_display | bool | False | Only display th
| | | | zoom, no pan

| image_display_size | tuplelint, int] | (200, @) | Initial size of
| | | | height). One of
| zoom_key | str | z | Key to zoom in

| | | | same zoom key w.
| is_color_order_bgr | bool | True | Color order is |
| | | | uses BGR by def:
| can_resize | bool | True | Can resize the

| | | | the bottom righ-
| | | | **xChannelsxx

| show_channels | bool | False | Show channels

| channel_layout_vertically | bool | False | Layout channels
| | | | **xZoom & Panxx

| pan_with_mouse | bool | True | Pan with mouse

| zoom_with_mouse_wheel | bool | True | Zoom with mouse
| | | | *xInfo displaye
| show_school_paper_background | bool | True | Show school papt
| | | | is unzoomed

| show_alpha_channel_checkerboard | bool | True | Show alpha chani
| show_grid | bool | True | Show grid with -
| draw_values_on_zoomed_pixels | bool | True | Draw values on |
| | | | *xInfo displaye
| show_image_info | bool | True | Show image info

| show_pixel_info | bool | True | Show pixel info
| | | | position under -
| | | | *xControl buttol
| show_zoom_buttons | bool | True | Show zoom butto
| show_options_panel | bool | True | Show options pa
| show_options_button | bool | True | Show options bu
| show_inspect_button | bool | True | Show the inspec
| | | | a large version
| | | | Inspector

Available custom attributes for AnyDataWithGui Generic attributes:

| Name | Type | Default | Explanation

+ + + +

| | | | *k«Generic attributesxx

| validate_value | object | None | Function to validate a paramete
| | | | return DataValidationResult.ok(

| label | str | | A label for the parameter. If e
| | | | function parameter name is used

| tooltip | str | | An optional tooltip to be displ:
| label_color | ImVecd4 | ImVec4(0.000000, | The color of the label (will us

| | | 0.000000, 0.000000, | text color if not provided)

| | | 1.000000) |

Code to test this GUI type:

" python
import typing
import fiatlight

@fiatlight.with_fiat_attributes(
Main attributes for the image viewer
union_param__only_display = False,
union_param__image_display_size = (200, 0),
union_param__zoom_key = "z",
union_param__is_color_order_bgr = True,
union_param__can_resize = True,
Channels
union_param__show_channels = False,
union_param__channel_layout_vertically = False,
Zoom & Pan

union_param__pan_with_mouse = True,

union_param__zoom_with_mouse_wheel = True,

Info displayed on image

union_param__show_school_paper_background = True,

union_param__show_alpha_channel_checkerboard = True,

union_param__show_grid = True,

union_param__draw_values_on_zoomed_pixels = True,

Info displayed under the image

union_param__show_image_info = True,

union_param__show_pixel_info = True,

Control buttons under the image

union_param__show_zoom_buttons = True,

union_param__show_options_panel = True,

union_param__show_options_button = True,

union_param__show_inspect_button = True,

Generic attributes

union_param__validate_value = None,

union_param__label = "",

union_param__tooltip = "",

union_param__label_color = ImVec4(0.000000, 0.000000, 0.000000, 1.000000))
def f(union_param: typing.Union[fiatlight.fiat_kits.fiat_image.image_types.ImageU8_:

return union_param

fiatlight.run(f)

Image types

Fiatlight provides several synonyms for Numpy arrays that denote different types of images. Each

of these types will be displayed by the image widget.

import fiatlight
from fiatlight.fiat_notebook import look_at_code
%look_at_python_file fiat_kits/fiat_image/image_types.py

"""This module defines several types you can use to annotate your functions.
The image types are defined as NewType instances, which are just aliases for numpy ¢

All those types will be displayed in the GUI as images, using the ImmVision image v:
(https://github.com/pthom/immvision)

Notes:
- The easiest way to display an image is to use the "Image’ type, which is a uni
or to use the "ImageU8 type, which is a union of all UInt8 image types.
— any numpy array can be used to create an "Image , and the viewer will try to ¢

from typing import Any, NewType
import numpy as np
from typing import Tuple, Union

Define shape types for clarity
ShapeHeightWidth = Tuple[int, int]
ShapeHeightWidthChannels = Tuplel[int, int, int]

Define UInt8 as a dtype for numpy arrays
UInt8 = np.dtypelnp.uint8]
AnyFloat = np.dtypelnp.floating[Any]]

#

UInt8 Images

#

ImageU8 = NewType("ImageU8", np.ndarray[ShapeHeightWidthChannels | ShapeHeightWid1
Type definitions for UInt8 images based on channel count

ImageU8_1 = NewType('"ImageU8_1", np.ndarray[ShapeHeightWidth, UInt8])
ImageU8_2 = NewType("ImageU8_2", np.ndarray[ShapeHeightWidthChannels, UInt8])
ImageU8_3 = NewType("ImageU8_3", np.ndarray[ShapeHeightWidthChannels, UInt8])

ImageU8_4 = NewType("ImageU8_4", np.ndarray[ShapeHeightWidthChannels, UInt8])
ImageU8_WithNbChannels = Union[ImageU8_1, ImageU8_2, ImageU8_3, ImageU8_4]

Type definitions based on the roles of the channels

ImageU8_RGB = NewType('"ImageU8_RGB", ImageU8_3)

ImageU8_RGBA = NewType('ImageU8_RGBA", ImageU8_4)

ImageU8_BGRA = NewType('ImageU8_BGRA", ImageU8_4)

ImageU8_BGR = NewType('"ImageU8_BGR", ImageU8_3)

ImageU8_GRAY = NewType("ImageU8_GRAY", ImageU8_1)

ImageU8_WithChannelsRoles = Union[ImageU8_RGB, ImageU8_RGBA, ImageU8_BGRA, ImageUS8_t

Generic type for any 8-bit image
ImageU8 = Union[ImageU8_WithNbChannels, ImageU8_WithChannelsRoles]

#

Float Images

#

Type definitions for float images based on channel count

ImageFloat_1 = NewType("ImageFloat_1", np.ndarray[ShapeHeightWidth, AnyFloat])
ImageFloat_2 = NewType('"ImageFloat_2", np.ndarray[ShapeHeightWidthChannels, AnyFloat

NewType('"ImageFloat_3", np.ndarray[ShapeHeightWidthChannels, AnyFloat
NewType('"ImageFloat_4", np.ndarray[ShapeHeightWidthChannels, AnyFloat

ImageFloat_3
ImageFloat_4

Generic type for any float image
ImageFloat = Union[ImageFloat_1, ImageFloat_2, ImageFloat_3, ImageFloat_4]

#

Generic Image Type

#

Image is a union of all image types
Image = Union[ImageU8, ImageFloat]

Register image type factories

def _register_image_type_factories() —> None:
from fiatlight.fiat_toqui.qui_registry import gui_factories
from fiatlight.fiat_kits.fiat_image.image_gui import ImageWithGui

prefix = "fiatlight.fiat_kits.fiat_image.image_types.Image"
gui_factories().register_factory_name_start_with(prefix, ImageWithGui)
gui_factories().register_factory_union(prefix, ImageWithGui)

Source code for the example

%look_at_python_file fiat_kits/fiat_image/fiat_image_attrs_demo.py

"""Demo how to set custom presentation attributes for the Image Widget (ImageWithGu:

Notes:
— The custom attributes can be set using the decorator fl.with_fiat_attributes
- In these examples, we intend to set custom attributes for the output of the
functions, i.e. the returned value.
As a consequence, the custom attributes are set in the return__...
arguments of the decorator.

import fiatlight as fl
from fiatlight.fiat_kits.fiat_image import ImageU8_3
import cv2

Our demo image
demo_image: ImageU8_3 = cv2.imread(fl.demo_assets_dir() + "/images/house.jpg") # t\

A simple function that will use the Image Widget with its default settings.
def show_image(image: ImageU8_3 = demo_image) —> ImageU8_3:
return image

A function whose output will initially show the channels

Since it does not specify a zoom key,

it will be zoomed and panned together with the image

shown by "show_image"

@fl.with_fiat_attributes(return__show_channels=True)

def show_image_channels(image: ImageU8_3 = demo_image) —> ImageU8_3:
return image

A function whose output will have a different zoom key:

it can be panned and zoomed, independently of the other images

@fl.with_fiat_attributes(return__zoom_key="other")

def show_image_different_zoom_key(image: ImageU8_3 = demo_image) —> ImageU8_3:
return image

A function that will use the Image Widget with custom attributes:
— the image is displayed only (it cannot be zoomed or panned,
and the pixel values are not shown)
- the image is displayed with a height of 300 pixels
(the width is automatically calculated)
- the image cannot be resized
@fl.with_fiat_attributes(
return__only_display=True,
return__image_display_size=(0, 300),
return__can_resize=False,

def show_image_only_display(image: ImageU8_3 = demo_image) —> ImageU8_3:
return image

def main() —> None:
graph = fl.FunctionsGraph()
graph.add_function(show_image)
graph.add_function(show_image_channels)
graph.add_function(show_image_different_zoom_key)
graph.add_function(show_image_only_display)
fl.run(graph, app_name="fiat_image_fiat_attrs_demo")

if __name__ == "__main__":
main()

fiat_matplotlib: display matplotlib figures
Fiatlight provides FigureWithGui , a viewer for Matplotlib figures.

Example

from fiatlight.fiat_kits.fiat_matplotlib import demo_matplotlib

demo_matplotlib.main()

intera
time_seconds (O] param gaussian heatmap BG) | [seta smosthing ga) |, -
He Output a? 1270 (W @ 35| ———Farams o . o e
Outp Gcﬁ?’/r—.“ . mean & @ LN -]
£ Output
3279 Output & @ 1513 1"
4918 J (L @ Outy 9
1879 Qutp - Gyl) i o e
L ColorMapviRiots [a 0300
@ Para -] 1 (]
L] | | | 00 o
i y (! v, : -
: o L o Ourput | S oy | # oo sera
1] Outpu 5 Cl wi \ f i 1
a /Y R N - o
Output v Q) \ M \ %. Gutp 0
\
B ! L C)
) Y/ \
'ri’ ¥4
hed

Fiat attributes available for the FigureWithGui widget

The FigureWithGui widget is not customizable. However, it can be zoomed by the user and this
setting will be saved.

Source code for the example

import fiatlight
from fiatlight.fiat_notebook import look_at_code # noga
%Llook_at_python_file fiat_kits/fiat_matplotlib/demo_matplotlib.py

"""Interactive Matplotlib Figures with Fiatlight

This example demonstrates several types of matplotlib figures rendered within Fiatl:

import matplotlib.pyplot as plt

from matplotlib.figure import Figure
import numpy as np

from enum import Enum

import time

import fiatlight as fl

Initialize the start time
_start_time = time.time()

def time_seconds() —> float:
"""Returns the time elapsed since the start of the application.
return time.time() - _start_time

def phase_from_time_seconds(time_: float) —> float:
"""Calculates the phase from the given time."""
return time_ x 15.0

Set the function to always update
time_seconds.invoke_always_dirty = True # type: ignore

def interactive_sine_wave(freq: float = 1.0, phase: float = 0.0, amplitude: float =
"""Generates an interactive sine wave with adjustable frequency, phase, and ampl
X = np.linspace(0, 2 % np.pi, 3000)
y = amplitude * np.sin(2 * np.pi *x freq * x + phase)
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_ylim([-1.5, 1.5]) # Adjust the y-axis limits
return fig

Set ranges and edit types for the sine wave parameters
fl.add_fiat_attributes(

interactive_sine_wave,

freq__range=(0.1, 3),

phase__range=(-np.pi, np.pi),

amplitude__range=(0.1, 2),

freq__edit_type="knob",

phase__edit_type="knob",

amplitude__edit_type="knob",

class ColorMap(Enum):
VIRIDIS = "viridis"
PLASMA = "plasma"
INFERNO = "inferno"
MAGMA = "magma"
CIVIDIS = "cividis"

@fl.with_fiat_attributes(
mean__range=(-5, 5),
variance__range=(0.1, 5),
levels__range=(1, 20),
)
def gaussian_heatmap(
mean: float = 0, variance: float = 1, colormap: ColorMap = ColorMap.VIRIDIS, 1le\
) —> Figure:
"""Generates a Gaussian heatmap with adjustable mean, variance, colormap, and nt
X =y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
Z = np.exp(—((X — mean) xx 2 + (Y — mean) *x 2) / (2 % variance))
fig, ax = plt.subplots()
contour = ax.contourf(X, Y, Z, levels, cmap=colormap.value)
fig.colorbar(contour, ax=ax)
return fig

@fl.with_fiat_attributes(window_size__range=(1, 40))

def data_smoothing(window_size: int = 5) —> Figure:
"""Demonstrates data smoothing using a moving average filter."""
X = np.linspace(0, 15, 300)
y = np.sin(x) + np.random.normal(@, 0.1, 300) # Noisy sine wave
y_smooth = np.convolve(y, np.ones(window_size) / window_size, mode="same")
fig, ax = plt.subplots()
ax.plot(x, y, label="Original")
ax.plot(x, y_smooth, label="Smoothed")
ax. legend()
return fig

def interactive_histogram(

n_bars: int = 10, mu: float = 0, sigma: float = 1, average: float = 500, nb_dat:
) —> Figure:

"""Generates an interactive histogram with adjustable number of bars, mean, and

data = np.random.normal(mu, sigma, int(nb_data)) + average

bins = np.linspace(np.min(data), np.max(data), n_bars)

fig, ax = plt.subplots()

ax.hist(data, bins=bins, color="blue", alpha=0.7)

return fig

Set interactive parameters for the histogram
fl.add_fiat_attributes(
interactive_histogram,
n_bars__edit_type="knob",

n_bars__range=(1, 300),
mu__edit_type="input",

mu__range=(-5, 5),

sigma__edit_type="drag",

sigma__range=(0.1, 5),
average__edit_type="slider_float_any_range",
nb_data__edit_type="slider",
nb_data__range=(100, 1_000_000),
nb_data__slider_logarithmic=True,
nb_data__slider_no_input=True,

def main() —> None:
""""Main function to run the Fiatlight application with interactive matplotlib f:
import fiatlight

Create a graph to manage functions and their links

graph = fiatlight.FunctionsGraph()
graph.add_function(interactive_sine_wave)
graph.add_function(gaussian_heatmap)
graph.add_function(data_smoothing)
graph.add_function(interactive_histogram)
graph.add_function(time_seconds)
graph.add_function(phase_from_time_seconds)
graph.add_link("time_seconds", "phase_from_time_seconds", "time_")
graph.add_link("phase_from_time_seconds", "interactive_sine_wave", "phase'")
fiatlight.run(graph, app_name="figure_with_gui_demo")

if __name__ == "__main__":
main()

flat_dataframe: pandas DataFrame explorer

Fiatlight provides DataFrameWithGui , a viewer for pandas dataframes that allows to sort, and
visualize the data. Composed with the advanced GUI creation capabilities of fiatlight, it can also
filter data.

Example

from fiatlight.fiat_kits.fiat_dataframe import dataframe_with_gui_demo_titanic
dataframe_with_gui_demo_titanic.main()

show_titanic_db

Params

Optional: None | Sag

Optional: None | Sgt

Optional: 5et | Unseat
0

Output

Rows per page:

Name Sex Age Parch Ticket Fare Cabin
Palsson, Mast male 3 349909 21.075 nan

dstram, M female 4.0 PP 9549 G6
Rice, Master. | male - 29,12 nan
Palsson, Miss. female
Laroche, Miss female 3. i z S5C/Paris 2123
Panula, Maste male 7.0 i 3101295

West, Miss, Ci femnale

Skoog, Mastel male

Caldwell, Mas male 0.83] 2 248738

Andersson, M female 2.0 } 347082

By clicking on the magnifier button m on top of the dataframe, you can open it in a popup where
sorting options are available. Click on one column (or shift-click on multiple columns) to sort the
data.

dataframe_with_gui_demo_titanic.main()

show_titanic_db

Params

Optional: Mone | Set
Optional: None | Set
Optional: 5et | Unseat

10

bk

ar Qutput

Output -

M 4 17 Rows per page:
Output - show_titanic_db (View)

© M 4 1/4/ 0 MM

Passe... Survi.. Pc.. MName 24 Sex Ticket Fare Cabin

804 1 : Thomas, M male 2625 8.5167 nan

756 Hamalaine male 250649 14.5 nan

645 : Baclini, Miz female 2666 19.2583 nan

470 Baclini, Mit female 2666 19.2583 nan

79 Caldwell, v male 248738 29.0 nan
Richards, i male 29106 18.75 nan
Allison, Ma male 113781 151.55 C22C26
Becker, Ma male ! 230136 39.0 F4
Dean, Masi male . C.A, 2315 20,575 nan
Goodwin, b male ! CA 2144 46.9 nan
|ohnson, M female 1. 347742 11.1333 nan
Mallet, Ma: male ! S.C./PARIS 20 37.0042 nan
Makid, Mis: female 1. 2653 15.7417 nan
Panula, Ma male ! 3101295 39.6875 nan
Allison, Mi: female 2. 113781 151.55 C22C26

Fiat attributes available for DataFrameWithGui

Here is a list of all the possible customizations options:

%%bash
fiatlight gui DataFrameWithGui

GUI type: DataFrameWithGui

A class to present a pandas DataFrame in the GUI, with pagination and other featu

Available custom attributes for DataFrameWithGui:

used for paginatis

| Name | Type | Default | Explanation

+ + + +

| widget_size_em | tuple[float, float] | (50.0, 15.0) | Widget size in em
| column_widths_em | dict | {} | Dictionary to spe
| | | | individual column
| rows_per_page_node | int | 10 | Number of rows to
| | | | displayed in a fui
| rows_per_page_classic | int | 20 | Number of rows to
| | | | displayed in a po|
| current_page_start_idx | int | | Index of the firs
I I I I

Available custom attributes for AnyDataWithGui Generic attributes:

1
T

I
| 0.000000, 0.000000,
| 1.000000)

| Name | Type | Default | Explanation

+ + + +

| | | | *xGeneric attributessx

| validate_value | object | None | Function to validate a paramete

| | | | return DataValidationResult.ok(

| label | str | | A label for the parameter. If e

| | | | function parameter name is used

| tooltip | str | | An optional tooltip to be displ:
label_color ImVec4 | ImVec4(0.000000, The color of the label (will ust

text color if not provided)

Code to test this GUI type:

" python
import typing
import fiatlight

@fiatlight.with_fiat_attributes(

dataframe_param__widget_size_em
dataframe_param__column_widths_em = {},

(50.0, 15.0),

dataframe_param__rows_per_page_node = 10,
dataframe_param__rows_per_page_classic = 20,
dataframe_param__current_page_start_idx = 0,
Generic attributes
dataframe_param__validate_value = None,
dataframe_param__label = "",
dataframe_param__tooltip = "",

dataframe_param__label_color = ImVec4(0.000000, 0.000000, 0.000000, 1.000000))

f(dataframe_param: pandas.core.frame.DataFrame) —> pandas.core.frame.DataFrame:
return dataframe_param

def

fiatlight.run(f)

Source code for the example

import fiatlight
from fiatlight.fiat_notebook import look_at_code # noga
%look_at_python_file fiat_kits/fiat_dataframe/dataframe_with_gui_demo_titanic.py

import fiatlight as fl
import pandas as pd
from enum import Enum

def make_titanic_df() —> pd.DataFrame:

Here, we provide an example data frame to the user,
using the Titanic dataset from the Data Science Dojo repository.
(widely used in data science tutorials)
url = "https://raw.githubusercontent.com/datasciencedojo/datasets/master/titanic
try:
df = pd.read_csv(url)
except Exception as e:
print(f"Error loading sample dataset: {e}")
df = pd.DataFrame() # Return an empty DataFrame in case of failure
return df

class Sex(Enum):

Man = "male"
Woman = "female"

@fl.with_fiat_attributes(

)

define the custom attributes for the function parameters
age_min__range=(0, 100),

age_max__range=(0, 100),

define custom attributes for the function output

(i.e. the presentation options for the DataFrame)
return__widget_size_em=(55.0, 15.0),
return__rows_per_page_node=10,
return__rows_per_page_popup=20,
return__column_widths_em={"Name": 5},

def show_titanic_db(

name_query: str = "", sex_query: Sex | None = None, age_min: int | None = None,

) —> pd.DataFrame:

dataframe = make_titanic_df()
if dataframe.empty:
return dataframe

filter dataframe
if name_query:

dataframe = dataframe[dataframe["Name"].str.contains(name_query, case=False)
if sex_query:
dataframe = dataframel[dataframe["Sex"] == sex_query.valuel

if age_min is not None:
dataframe = dataframe[dataframe["Age"] >= age_min]
if age_max is not None:
dataframe = dataframel[dataframe["Age"]

A
1

age_max]

return dataframe

def main() -> None:
fl.run(show_titanic_db, app_name="dataframe_with_gui_demo_titanic")

if __name__ == "__main__":
main()

fiat_implot: widget for 1D and 2D numpy arrays

Fiatlight provides SimplePlotGui , a viewer for numpy arrays that allows to plot 1D and 2D arrays

with ImPlot

e ImPlot is a very capable and fast plotting library, not limited to simple 1D and 2D plots. It is
available with Fiatlight and ImGui Bundle (on which Fiatlight is based). See online demo of

ImPlot for more examples.

It is faster than Matplotlib within Fiatlight, and well adapted for real time plots (can refresh
at 120FPS +)

Example

from fiatlight.fiat_kits.fiat_implot import demo_implot

demo_implot.main()

https://github.com/epezent/implot
https://traineq.org/implot_demo/src/implot_demo.html

make_spirograph_curve E| time_seconds .
phase_from_time_seconds
[@] EE Params [3¥ Output S get_simple_values
& radius_fixed circl| 18.650 |E !J Qutput 19.81 a| @ “\‘ & time - @l 6] Param
./: radius_moving ch.| B.GET |! g| g Clu‘tp-ul i 7 x 1,300 . a] i]
& pen_offset 11.207 I.F_ - a-'tp-ut 2972 [0 @@ | [@)RF Output
ro s o2 ™8 e I @
[Q] Dutput lime scatter stairs (@ bars
Ou'tpul ::: 5 [E: o g | Buta Fit
| Auto Fit [E,_ paanl Plat
A @ phase 297.2 o 08|
- ,&‘ amplitude 1.300 -Tl 'TJ |E -il 0.6 !
(@3 ——— oupu -
Output - Q) (i . - I B I
(] futa Fit :
£ #lot *
[0 1 2 34567 809
15|
11
05|
N ok
. 05 |
i
1.5 | y
L s
0 1 2 3 4 S 6 7 B 9
Fiat attributes available for SimplePlotGui
Here is a list of all the type handled by SimplePlotGui:
%%bash
fiatlight types FloatMatrix_Dim
Data Type Gui Type

fiatlight.fiat_kits.fiat_implot.array_types.FloatM
atrix_Diml
synonym for a 1D ndarray of floats (NewType)

fiatlight.fiat_kits.fiat_imp

A GUI for presenting 1D or
array as a line, scatter (+
small enough)

—_— 4 — +
4+ —— 4 — +

fiatlight.fiat_kits.fiat_implot.array_types.FloatM
atrix_Dim2
synonym for a 2D ndarray of floats (NewType)

fiatlight.fiat_kits.fiat_imp

A GUI for presenting 1D or
array as a line, scatter (+
small enough)

Here is a list of all the possible customizations options:

%%bash
fiatlight gui SimplePlotGui

GUI type: SimplePlotGui

A GUI for presenting 1D or 2D arrays with ImPlot. Can present the array as a line

Available custom attributes for SimplePlotGui:

| Name | Type | Default

| Explanation

+ + + +

| plot_type | str | line | The type of presen
| | | | line, scatter, sta
| plot_size_em | tuple[float, float] | (35.0, 20.0) | Size in em units (.
| | | | height)

| auto_fit | bool | True | Auto-scale the plo
| small_array_threshold | int | 100 | The threshold for -
| | | | present scatter, b

Available custom attributes for AnyDataWithGui Generic attributes:

| Name | Type | Default | Explanation

+ + + +

| | | | *«Generic attributesxx

| validate_value | object | None | Function to validate a paramete
| | | | return DataValidationResult.ok(

| label | str | | A label for the parameter. If e
| | | | function parameter name is used

| tooltip | str | | An optional tooltip to be displ:
| label_color | ImVec4 | ImVec4(0.000000, | The color of the label (will us

| | | 0.000000, 0.000000, | text color if not provided)

| | | 1.000000) |

Code to test this GUI type:

" python
import typing
import fiatlight

@fiatlight.with_fiat_attributes(
floatmatrix_param__plot_type = "1line",
floatmatrix_param__plot_size_em = (35.0, 20.0),
floatmatrix_param__auto_fit = True,
floatmatrix_param__small_array_threshold = 100,
Generic attributes

floatmatrix_param__validate_value = None,

floatmatrix_param__label = "",

floatmatrix_param__tooltip = "",

floatmatrix_param__label_color = ImVec4(0.000000, 0.000000, 0.000000, 1.000000)
def f(floatmatrix_param: fiatlight.fiat_kits.fiat_implot.array_types.FloatMatrix) -

return floatmatrix_param

fiatlight.run(f)

Source code for the example

import fiatlight
from fiatlight.fiat_notebook import look_at_code # noga
%look_at_python_file fiat_kits/fiat_implot/demo_implot.py

"""Demonstrates plots generated using ImPlot (https://github.com/epezent/implot). In

This example demonstrates

- how to create a live sine wave plot with adjustable frequency, phase, and amplituc
The frequency, phase, and amplitude can be adjusted interactively using knobs.

- how to create a spirograph-like curve using ImPlot.

from fiatlight import fiat_implot
import fiatlight as fl

import numpy as np

import math

import time

_start_time = time.time()

def time_seconds() —> float:
return time.time() - _start_time

def phase_from_time_seconds(time_: float) —> float:
return time_ x 15.0

time_seconds.invoke_always_dirty = True # type: ignore

def sin_wave(phase: float, amplitude: float = 1.0) -> fiat_implot.FloatMatrix_Dim2:

X = np.arange(0, 10, 0.1)
y = np.sin(x + phase) x amplitude
r = np.stack((x, y))

return r # type: ignore

@fl.with_fiat_attributes(
radius_fixed_circle__range=(0.0, 100.0),
radius_moving_circle__range=(0.0, 100.0),
pen_offset__range=(0.0, 100.0),
nb_turns__range=(0.0, 100.0),

def make_spirograph_curve(
radius_fixed_circle: float = 10.84,
radius_moving_circle: float = 3.48,
pen_offset: float = 6.0,
nb_turns: float = 23.0,

) —> fiat_implot.FloatMatrix_Dim2:
"""'3 spirograph-like curve
import numpy as np

t
X

np.linspace(@, 2 * np.pi * nb_turns, int(500 * nb_turns))
(radius_fixed_circle + radius_moving_circle) * np.cos(t) - pen_offset * np.c
(radius_fixed_circle + radius_moving_circle) / radius_moving_circle * t

)

y = (radius_fixed_circle + radius_moving_circle) * np.sin(t) - pen_offset * np.:
(radius_fixed_circle + radius_moving_circle) / radius_moving_circle * t

)

return np.array([x, yl) # type: ignore

@fl.with_fiat_attributes(
X__range=(0.0, 10.0),
return__plot_type="bars",
return__auto_fit=False,
return__plot_size_em=(20, 10),

def get_simple_values(x: float) —> fiat_implot.FloatMatrix_Diml:
r= 1[I
for i in range(10):
r.append(math.cos (x*xi))
return np.array(r) # type: ignore

def main() -> None:
graph = fl.FunctionsGraph()
graph.add_function(make_spirograph_curve)
graph.add_function(get_simple_values)

graph.add_function(time_seconds)
graph.add_function(phase_from_time_seconds)
graph.add_function(sin_wave)
graph.add_link("time_seconds", "phase_from_time_seconds")
graph.add_link("phase_from_time_seconds", "sin_wave'")

fl.run(graph, app_name="Demo ImPlot")

if __name__ == "_ _main__":
main()

Comparisons w. other prototyping tools

Fiatlight integrates features from various tools into a unified, flexible framework for rapid
prototyping and exploration.

Similar tools dedicated to rapid prototyping, exploration and visualization include:

e Scratch: For visual graph creation.
» Jupyter: For interactive data exploration.

e Python Streamlit & Dash: For easy app creation with integrated GUI elements.

https://scratch.mit.edu/
https://jupyter.org/
https://streamlit.io/
https://plotly.com/dash/

* Ryven: For advanced graph creation.

e Unity Blueprints: For visual scripting and custom widgets.

e Comfy Ul: For Al workflow integration.

Compared to the aforementioned software frameworks, Fiatlight distinguishes itself by:

Pros

* Automatic GUI Generation — Introspects functions & structured data to create interfaces.
e Live Function State Visualization — View intermediate values at any step.

* Error Replay & Debugging — Reproduce issues with the exact inputs that caused them.

» State Persistence — Save & restore multiple application states.

e High-Performance Rendering — Uses Dear ImGui with C++ and OpenGL for speed.

* Runs Locally in the Browser — Can be executed entirely in-browser via Pyodide, requiring
no server.

» Seamless Transition to Full Applications — Prototypes can evolve into full Dear ImGui apps,

with easy migration to C++.

Cons

* No Server-Side Computation — Cannot rely on a remote server for heavy computation (e.g.,
large Al models like TensorFlow).

An extensive comparison of Fiatlight with streamlit, with dash, and with ipywidgets is available in

the subsections.

Comparison with Streamlit

This page provides a detailed comparison between Fiatlight and Streamlit, highlighting the
strengths and weaknesses of each framework.

https://ryven.org/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/
https://github.com/comfyanonymous/ComfyUI

Summary

1.

10.

Example used for the comparison:

Display multiple Matplotlib figures and an animated sine wave

. Performance and Responsiveness:

Streamlit can refresh figures at about 2 FPS, while Fiatlight can update them at 35 FPS (it
could be 120 FPS if using ImPlot instead of MatPlotlib). However, no particular effort was made

in optimizing streamlit workflow.

. Customization and Extensibility:

Compare how each framework allows customization of widgets and extensibility.

. State Management:

Evaluate how user inputs and application states are managed and restored.

. Algorithmic pipelines:

Examine the support for chaining functions and visualizing their interactions.

. User Experience:

Discuss the overall user experience, including Ul manipulation capabilities.

. Ease of Use and Learning Curve:

Assess the ease of learning and using each framework.

. Deployment and Accessibility:

Compare the deployment capabilities and accessibility, including online execution.

. Community and Support:

Look at the available community support and resources.

Integration with Data Science Tools:

Analyze how well each framework integrates with popular data science libraries and tools.

Detailed Comparison

1. Example used for the comparison

This comparison is based on the following example, which includes several MatPlotlib figures, along

with an animated sine wave.

Using Fiatlight

See the code of & figure_with_gui_demo.py.

Here it is in action with Fiatlight. The sine wave is animated at 35 FPS.

from fiatlight.fiat_kits.fiat_matplotlib import demo_matplotlib

figure_with_gui_demo.main()

Using Streamlit

The code for Streamlit was split into two parts: & figures and & animated sine wave.

file:///Users/pascal/dvp/OpenSource/ImGuiWork/_Bundle/fiatlight/src/python/fiatlight/doc/_build/html/_downloads/e156301aa5fe8286556f248b03a3e82f/demo_matplotlib.py
file:///Users/pascal/dvp/OpenSource/ImGuiWork/_Bundle/fiatlight/src/python/fiatlight/doc/_build/html/_downloads/27e5d8614377c4ea68b2ead9d8958da7/figure_demo_streamlit.py
file:///Users/pascal/dvp/OpenSource/ImGuiWork/_Bundle/fiatlight/src/python/fiatlight/doc/_build/html/_downloads/d165e47fbbd1f192750bb08fbb261bda/anim_wave_streamlit.py

Here are screenshots of it in action within Streamlit. The sine wave is animated at 2 FPS.

Interactive Animated Sine Wave
with Streamlit

Interactive Sine Wave

Frequency

B.18 3.88

Amplitude

1.5

1.0~

0.5 1

0.0 1

—-1.0 4

-1.5

Start Animation

Stop Animation

Interactive Data Visualization with
Streamlit

Interactive Sine Wave

Gaussian Heatmap

.

L&
4

L1 3

(L]
[

o
-2

[k
-4

(1]

4 1 a 2 L]

2. Performance and Responsiveness

[

e Fiatlight:
o Updates at 35 frames per second, providing real-time interactivity. If using ImPlot instead
of Matplotlib, Fiatlight would reach the artificial limit of 120 FPS.
e Streamlit:
o Displays at about 2 frames per second. However, no particular effort was made in
optimizing streamlit workflow; and better results may be possible (maybe by switching

from Matplotlib to Plotly).

https://github.com/epezent/implot

3. Customization and Extensibility

e Fiatlight:
o Allows deep customization of widgets, including advanced editing types and ranges.
Users can define custom widgets and function graphs for extensive flexibility.
e Streamlit:

o Provides a wide range of built-in widgets and customization options, but may not match

Fiatlight's specialized functionalities.

4. State Management

e Fiatlight:
o Automatically saves and restores user inputs, widget placements, and settings. Supports
saving different configurations and restoring them later.

e Streamlit:

o Requires manual handling of state management. Users need to implement custom
solutions to save and restore states across sessions.

5. Algorithmic pipelines

 Fiatlight:
o Supports function graphs, enabling chaining of functions and visualization of their inputs
and outputs, simplifying complex workflows.

e Streamlit:

o Does not natively support function graphs. Users need to manually code function linkages,

which can be more cumbersome.

6. User Experience

 Fiatlight:
o Offers rich user experience with the ability to resize and move figures, enhancing usability
and flexibility.

e Streamlit:

o Provides a straightforward interface but lacks advanced Ul manipulation features like
resizing and moving figures.

7. Ease of Use and Learning Curve

e Fiatlight:
o Powerful and flexible but might have a steeper learning curve due to advanced features.
e Streamlit:

o User-friendly and easy to learn, allowing rapid development and prototyping with minimal
code.

8. Deployment and Accessibility

 Fiatlight:
o Fiatlight can run inside a Jupyter Notebook, but requires a local environment and lacks
web-based deployment capabilities. Efforts with pyodide are underway but still in

development.
e Streamlit:

o Easily deployable on the web and compatible with platforms like Google Colab, making it

accessible from anywhere, which is advantageous for collaboration and sharing.

9. Community and Support

e Fiatlight:
o May not have as extensive a community or support resources as Streamlit.
e Streamlit:

o Large and active community, extensive documentation, and support resources, beneficial
for new users and those seeking help or examples.

10. Integration with Data Science Tools

e Fiatlight:
o Can integrate with data science tools but may require more setup and configuration. Its
use of Dear ImGui allows for high-performance graphics and interactive applications,

which can be beneficial for certain data science applications.
e Streamlit:

o Well-integrated with popular data science libraries and tools, making it a go-to choice for

data scientists and analysts.

Conclusion

Both Fiatlight and Streamlit have their unique advantages.

 Fiatlight excels in high-performance applications, offering extensive customization, advanced
interactive features, and sophisticated state management that includes automatic saving and
restoring of user inputs and widget placements. This makes it exceptionally well-suited for
rapid prototyping, as users can quickly iterate on their designs without losing their
configurations. Its support for function graphs simplifies complex workflows, making it a
powerful tool for developing intricate applications.

» Streamlit is ideal for users who prioritize ease of use and web-based deployment. It offers a
user-friendly interface that facilitates rapid development and prototyping, especially for data-
driven applications and dashboards. Its seamless integration with popular data science
libraries and web deployment capabilities makes it accessible from anywhere, promoting

collaboration and sharing.

The choice between them depends on the specific needs and preferences of the user or project.
Fiatlight offers a more feature-rich environment for those needing advanced GUI capabilities and
state management, while Streamlit provides a simpler, more accessible solution for data

visualization and web deployment.

Using Streamlit

The code for Streamlit was split into two parts: & figures and & animated sine wave.

file:///Users/pascal/dvp/OpenSource/ImGuiWork/_Bundle/fiatlight/src/python/fiatlight/doc/_build/html/_downloads/27e5d8614377c4ea68b2ead9d8958da7/figure_demo_streamlit.py
file:///Users/pascal/dvp/OpenSource/ImGuiWork/_Bundle/fiatlight/src/python/fiatlight/doc/_build/html/_downloads/d165e47fbbd1f192750bb08fbb261bda/anim_wave_streamlit.py

Here are screenshots of it in action within Streamlit. The sine wave is animated at 2 FPS.

Interactive Animated Sine Wave
with Streamlit

Interactive Sine Wave

Frequency

B.18 3.88

Amplitude

1.5

1.0~

0.5 1

0.0 1

—-1.0 4

-1.5

Start Animation

Stop Animation

Interactive Data Visualization with
Streamlit

Interactive Sine Wave

Gaussian Heatmap

.

L&
4

L1 3

(L]
[

o
-2

[k
-4

(1]

4 1 a 2 L]

2. Performance and Responsiveness

[

e Fiatlight:
o Updates at 35 frames per second, providing real-time interactivity. If using ImPlot instead
of Matplotlib, Fiatlight would reach the artificial limit of 120 FPS.
e Streamlit:
o Displays at about 2 frames per second. However, no particular effort was made in
optimizing streamlit workflow; and better results may be possible (maybe by switching

from Matplotlib to Plotly).

https://github.com/epezent/implot

3. Customization and Extensibility

e Fiatlight:
o Allows deep customization of widgets, including advanced editing types and ranges.
Users can define custom widgets and function graphs for extensive flexibility.
e Streamlit:

o Provides a wide range of built-in widgets and customization options, but may not match

Fiatlight's specialized functionalities.

4. State Management

e Fiatlight:
o Automatically saves and restores user inputs, widget placements, and settings. Supports
saving different configurations and restoring them later.

e Streamlit:

o Requires manual handling of state management. Users need to implement custom
solutions to save and restore states across sessions.

5. Algorithmic pipelines

 Fiatlight:
o Supports function graphs, enabling chaining of functions and visualization of their inputs
and outputs, simplifying complex workflows.

e Streamlit:

o Does not natively support function graphs. Users need to manually code function linkages,

which can be more cumbersome.

6. User Experience

 Fiatlight:
o Offers rich user experience with the ability to resize and move figures, enhancing usability
and flexibility.

e Streamlit:

o Provides a straightforward interface but lacks advanced Ul manipulation features like
resizing and moving figures.

7. Ease of Use and Learning Curve

e Fiatlight:
o Powerful and flexible but might have a steeper learning curve due to advanced features.
e Streamlit:

o User-friendly and easy to learn, allowing rapid development and prototyping with minimal
code.

8. Deployment and Accessibility

 Fiatlight:
o Fiatlight can run inside a Jupyter Notebook, but requires a local environment and lacks
web-based deployment capabilities. Efforts with pyodide are underway but still in

development.
e Streamlit:

o Easily deployable on the web and compatible with platforms like Google Colab, making it

accessible from anywhere, which is advantageous for collaboration and sharing.

9. Community and Support

e Fiatlight:
o May not have as extensive a community or support resources as Streamlit.
e Streamlit:

o Large and active community, extensive documentation, and support resources, beneficial
for new users and those seeking help or examples.

10. Integration with Data Science Tools

e Fiatlight:
o Can integrate with data science tools but may require more setup and configuration. Its
use of Dear ImGui allows for high-performance graphics and interactive applications,

which can be beneficial for certain data science applications.
e Streamlit:

o Well-integrated with popular data science libraries and tools, making it a go-to choice for
data scientists and analysts.

Conclusion

Both Fiatlight and Streamlit have their unique advantages.

 Fiatlight excels in high-performance applications, offering extensive customization, advanced
interactive features, and sophisticated state management that includes automatic saving and
restoring of user inputs and widget placements. This makes it exceptionally well-suited for
rapid prototyping, as users can quickly iterate on their designs without losing their
configurations. Its support for function graphs simplifies complex workflows, making it a
powerful tool for developing intricate applications.

» Streamlit is ideal for users who prioritize ease of use and web-based deployment. It offers a
user-friendly interface that facilitates rapid development and prototyping, especially for data-
driven applications and dashboards. Its seamless integration with popular data science
libraries and web deployment capabilities makes it accessible from anywhere, promoting
collaboration and sharing.

The choice between them depends on the specific needs and preferences of the user or project.
Fiatlight offers a more feature-rich environment for those needing advanced GUI capabilities and
state management, while Streamlit provides a simpler, more accessible solution for data

visualization and web deployment.

Comparison with Dash

This page provides a detailed comparison between Fiatlight and Dash, highlighting the strengths
and weaknesses of each framework.

Summary

1. Example used for the comparison: Display multiple Matplotlib figures and an animated sine

wave

2. Performance and Responsiveness: Dash can update the graph up to 45 FPS on a local
server (using Plotly), but is likely to be slower on a remote server. Fiatlight can update the
graph up to 35 FPS when using Matplotlib. If using ImPlot instead of Matplotlib, Fiatlight would
reach the artificial limit of 120 FPS.

3. Customization, Layout and Extensibility: Compare how each framework allows
customization of widgets and extensibility.

4. State Management: Evaluate how user inputs and application states are managed and
restored.

5. Algorithmic Pipelines: Examine the support for chaining functions and visualizing their
interactions.

6. User Experience: Discuss the overall user experience, including Ul manipulation capabilities.
7. Ease of Use and Learning Curve: Assess the ease of learning and using each framework.

8. Deployment and Accessibility: Compare the deployment capabilities and accessibility,
including online execution.

9. Community and Support: Look at the available community support and resources.

10. Integration with Data Science Tools: Analyze how well each framework integrates with
popular data science libraries and tools.

Detailed Comparison

1. Example used for the comparison

This comparison is based on the following example, which includes several Matplotlib figures, along
with an animated sine wave.

Using Fiatlight

See the code of & figure_with_gui_demo.py.

Here it is in action with Fiatlight. The sine wave is animated at 35 FPS (it could be 120 FPS if using
ImPlot instead of MatPlotlib).

https://github.com/epezent/implot
file:///Users/pascal/dvp/OpenSource/ImGuiWork/_Bundle/fiatlight/src/python/fiatlight/doc/_build/html/_downloads/e156301aa5fe8286556f248b03a3e82f/demo_matplotlib.py

from fiatlight.fiat_kits.fiat_matplotlib import demo_matplotlib

figure_with_gui_demo.main()

Using Dash

A similar application was coded for Dash. Here is its & source code.

file:///Users/pascal/dvp/OpenSource/ImGuiWork/_Bundle/fiatlight/src/python/fiatlight/doc/_build/html/_downloads/c1363f927e2e7562d2820c6ece294f2e/figure_demo_dash.py

And below is a screenshot of the Dash app with multiple figures and an animated sine wave.
Interactive Plots with Dash

FPS: 4589
Frequency Amplitude

Interactive Sine Wawve

~ o //] / \\ // AN / \\ / N\ / AN

Gaussian Heatmap

5
0.8
0.6
= 0 04
2
-5 o

4 z] F 4
x

Window Siie

Data Smoathing

1 Sy, P, = Origia
r'_/ft’\.‘rh}w \‘r% vﬂ/—w‘M\Mﬁ.\ ;Iﬁ_‘/”mcgt T —'-l—l\:ocr‘:-d
E L\\w"‘r "ot s h
b ot Y -
=) et S o
-1 e s "-’f o P it
] P & & io iz 1
x
Musnher of B Mess Srandand Deviatan
Average Number of Data Paints

Interactive Histogram

Frequency
g

b3

2. Performance and Responsiveness

e Fiatlight:
o When using Matplotlib, Fiatlight runs at 35 FPS. When using ImPlot, it runs at the artificial
limit of 120 FPS.
* Dash:
o Dash can update the graph up to 45 FPS on a local server (using Plotly), but is likely to be

slower on a remote server, because each timer update requires communication via a web
socket.

3. Customization, Layout and Extensibility

e Fiatlight:
o Allows deep customization of widgets, including advanced editing types and ranges.
Users can define custom widgets and function graphs for extensive flexibility.

o Supports advanced layout management, including resizing and moving figures. Arranging
the functions on the screen is as easy as dragging with the mouse. And since those

options are saved, they become part of the final application.
o The code for the application occupies 135 Python lines.
e Dash:

o Offers a wide range of customizable components including Knobs, but may require more
manual coding to achieve highly customized interfaces.

o The layout is achieved via standard HTML divs. Changing their size or moving them
requires some adaptation on the Python side.

o The code for the application occupies 242 Python lines.

4. State Management

e Fiatlight:
o Automatically saves and restores user inputs, widget placements, and settings. Supports
saving different configurations and restoring them later.
e Dash:

o State management is manual and typically involves more code to save and restore states

across sessions.

5. Algorithmic Pipelines

e Fiatlight:
o Supports function graphs, enabling chaining of functions and visualization of their inputs
and outputs, simplifying complex workflows.
* Dash:

o Supports callbacks to chain functions but may be less visual and more code-intensive.

6. User Experience

e Fiatlight:
o Offers a rich user experience with the ability to resize and move figures, enhancing
usability and flexibility.
e Dash:

o Provides a straightforward interface with interactive components but lacks advanced Ul

manipulation features like resizing and moving figures.

7. Ease of Use and Learning Curve

e Fiatlight:
o Powerful and flexible, but it might require some initial learning since it is a novel

framework. However, the immediate GUI mode is easy to grasp, making it accessible for

new users.
e Dash:

o User-friendly but can become complex with advanced use cases, requiring a good
understanding of the Dash framework and callbacks.

8. Deployment and Accessibility

e Fiatlight:

o Fiatlight can run inside a Jupyter Notebook, but requires a local environment and lacks
web-based deployment capabilities. Efforts with pyodide are underway but still in

development.
e Dash:

o Easily deployable on the web, with built-in support for deploying to cloud platforms like

Heroku and Azure.

9. Community and Support

e Fiatlight:

o May not have as extensive a community or support resources as Dash.

e Dash:
o Large and active community, extensive documentation, and support resources, beneficial

for new users and those seeking help or examples.

10. Integration with Data Science Tools

 Fiatlight:
o Can integrate with data science tools but may require more setup and configuration. Its
use of Dear ImGui allows for high-performance graphics and interactive applications,
which can be beneficial for certain data science applications.

¢ Dash:

o Well-integrated with popular data science libraries and tools, making it a go-to choice for
data scientists and analysts.

Conclusion

Both Fiatlight and Dash have their unique advantages.

» Fiatlight excels in high-performance applications, offering extensive customization, advanced
interactive features, and sophisticated state management that includes automatic saving and
restoring of user inputs and widget placements. This makes it exceptionally well-suited for
rapid prototyping, as users can quickly iterate on their designs without losing their
configurations. Its support for function graphs simplifies complex workflows, making it a
powerful tool for developing creative applications.

e Dash is ideal for users who prioritize building interactive dashboards and data visualization
applications with ease of deployment. It offers a user-friendly interface that facilitates rapid
development and deployment, especially for data-driven applications. Its seamless integration
with popular data science libraries and robust web deployment capabilities make it accessible
and powerful for building analytical web applications.

The choice between them depends on the specific needs and preferences of the user or project.
Fiatlight offers a more feature-rich environment for those needing advanced GUI capabilities and
state management, while Dash provides a robust solution for building and deploying data-driven

dashboards and applications.

Comparison with Jupyter Lab and ipywidgets

This page provides a detailed comparison between Fiatlight and Jupyter Lab + ipywidgets,
highlighting the strengths and weaknesses of each framework.

Summary

1. Example used for the comparison: Display multiple Matplotlib figures and an animated sine

wave

2. Performance and Responsiveness: Compare the performances of both frameworks on live
and static figures.

3. Customization, Layout and Extensibility: Compare how each framework allows
customization of widgets and extensibility.

4. State Management: Evaluate how user inputs and application states are managed and
restored.

5. Algorithmic Pipelines: Examine the support for chaining functions and visualizing their

interactions.
6. User Experience: Discuss the overall user experience, including Ul manipulation capabilities.
7. Ease of Use and Learning Curve: Assess the ease of learning and using each framework.

8. Deployment and Accessibility: Compare the deployment capabilities and accessibility,
including online execution.

9. Community and Support: Look at the available community support and resources.

10. Integration with Data Science Tools: Analyze how well each framework integrates with
popular data science libraries and tools.

Detailed Comparison

1. Example used for the comparison

This comparison is based on the following example, which includes several Matplotlib figures, along

with an animated sine wave.

Using Fiatlight

See the code of & figure_with_gui_demo.py.

Here it is in action with Fiatlight. The sine wave is animated at 35 FPS (it could be 120 FPS if using
ImPlot instead of MatPlotlib).

from fiatlight.fiat_kits.fiat_matplotlib import demo_matplotlib

figure_with_gui_demo.main()

Using ipywidgets [Jupyter Lab

A similar demo was created using Jupyter Lab and ipywidgets. It is available in this notebook.

2. Performance and Responsiveness

It is surprisingly difficult to create live figures in Jupyter Lab. Also, while a figure is being updated,

widgets will not transmit new values to python.

An animated figure can be created by updating a figure in a loop inside a cell. The refresh rate
using Matplotlib is about 1 FPS, and much higher when using ProgressPlot . However, the user
has to wait until the cell has finished executing.

file:///Users/pascal/dvp/OpenSource/ImGuiWork/_Bundle/fiatlight/src/python/fiatlight/doc/_build/html/_downloads/e156301aa5fe8286556f248b03a3e82f/demo_matplotlib.py

Fiatlight can update the graph up to 35 FPS when using Matplotlib. If using ImPlot instead of
Matplotlib, Fiatlight would reach the artificial limit of 120 FPS. The updates are done

asynchronously and all the other widgets remain active.

3. Customization, Layout and Extensibility

e Fiatlight:
o Allows deep customization of widgets, including advanced editing types and ranges.
Users can define custom widgets and function graphs for extensive flexibility.

o Supports advanced layout management, including resizing and moving figures. Arranging
the functions on the screen is as easy as dragging with the mouse. Since these options are
saved, they become part of the final application.

o The code for the application occupies 135 Python lines.
e Jupyter | ipywidgets:
o Offers a variety of customizable components, including sliders, checkboxes, dropdowns,
and text inputs. Users can create interactive widgets that integrate seamlessly with

Jupyter notebooks.

o The layout is limited to what is possible inside a notebook, but you can use ipywidgets 's
HBox , VBox , and other layout widgets to organize components. However, it lacks the
advanced layout management features like resizing and moving figures within the
notebook interface.

o The code for the application occupies 142 Python lines.

4. State Management

e Fiatlight:
o Automatically saves and restores user inputs, widget placements, and settings. Supports

saving different configurations and restoring them later.
e Jupyter [ipywidgets:
o State management is manual and typically involves more code to save and restore states

across sessions.

5. Algorithmic Pipelines

https://github.com/epezent/implot

 Fiatlight:
o Supports function graphs, enabling chaining of functions and visualization of their inputs
and outputs, simplifying complex workflows.
e Jupyter [ipywidgets:
o Supports sequential and interactive cell execution but lacks a native function graph

feature. While users can manually code function linkages and interactions, it does not offer
the same visual pipeline management as Fiatlight.

6. User Experience

e Fiatlight:
o Offers a rich user experience with the ability to resize and move figures, enhancing
usability and flexibility.
» Jupyter [ipywidgets:
o offers a basic user experience for the final user. Note: the appearance of the ipywidgets is
not restored when reopening a notebook: the user has to re-run the cells to get the

widgets back.

7. Ease of Use and Learning Curve

e Fiatlight:
o Powerful and flexible, but it might require some initial learning since it is a novel

framework. However, the immediate GUI mode is easy to grasp, making it accessible for
new users.

e Jupyter | ipywidgets:

o offers a truly great experience for the developer, in terms of ease and speed of
development.

8. Deployment and Accessibility

e Fiatlight:
o Fiatlight can run inside a Jupyter Notebook, but requires a local environment and lacks
web-based deployment capabilities. Efforts with pyodide are underway but still in

development.

e Jupyter [ipywidgets:

o deployable locally and on almost any cloud provider (Google Colab, Binder, etc.)

9. Community and Support

e Fiatlight:

o May not have as extensive a community or support resources as more established
frameworks, but it benefits from the communities of the libraries it builds upon, like Dear
ImGui, Hello ImGui, and ImGui Bundle.

o Jupyter [ipywidgets:
o Large and active community, extensive documentation, and support resources, beneficial

for new users and those seeking help or examples. Many resources are available for
troubleshooting and expanding functionality.

10. Integration with Data Science Tools

 Fiatlight:

o Can integrate with data science tools but may require more setup and configuration. Its
use of Dear ImGui allows for high-performance graphics and interactive applications,
which can be beneficial for certain data science applications.

e Jupyter [ipywidgets:
o Very mature integration with popular data science libraries and tools such as NumPy,

pandas, scikit-learn, and more. It is widely used in the data science community, making it a
go-to choice for data-driven research and analysis.

Conclusion

Both Fiatlight and Jupyter Lab with ipywidgets have their unique advantages.

 Fiatlight excels in high-performance applications, offering extensive customization, advanced
interactive features, and sophisticated state management that includes automatic saving and
restoring of user inputs and widget placements. This makes it exceptionally well-suited for
rapid prototyping, as users can quickly iterate on their designs without losing their
configurations. Its support for function graphs simplifies complex workflows, making it a
powerful tool for developing creative applications.

» Jupyter Lab with ipywidgets is ideal for users who prioritize ease of use, rapid development,
and integration with data science tools. It offers a user-friendly interface that facilitates
interactive data analysis and visualization. The extensive community support, along with its
deployment capabilities on platforms like Google Colab and Binder, make it highly accessible
and powerful for educational and research purposes.

The choice between them depends on the specific needs and preferences of the user or project.
Fiatlight offers a more feature-rich environment for those needing advanced GUI capabilities and
state management, while Jupyter Lab with ipywidgets provides a robust solution for interactive
data science and educational applications.

