
Fiatlight: Brighten the Journey from
Idea to Creation

Contents
Installation

Video Tutorials

Tutorials list

Sources for these videos

First Steps

Manual

API

Fiatlight Kits

Comparisons w. other prototyping tools

Expressive Code, Instant Applications

Fiatlight bridges the gap between code and UI, allowing you to turn ideas into fully functional

applications in minutes. It automates UI generation for functions and structured data, making

prototyping and fine-tuning faster and easier.

For technical readers:

FiatLight provides automatic UI generation for functions and structured data, making it a

powerful tool for rapid prototyping and application development.

Instant Widgets: Edit and visualize any Python object with fine-grained control.

Function Pipelines: Chain functions into visual and interactive workflows.

Built-in Validation & Debugging: Enforce constraints, inspect data, and replay errors.

State Persistence: Save and restore application state seamlessly.

The name “Fiatlight” is inspired by “Fiat Lux”, i.e. “Let there be light”.

Fiatlight is designed for rapid prototyping, experimentation, and fine-tuning applications. It does

not provide full design control over GUI.

Notes: this page intends to provide a high-level overview of Fiatlight’s capabilities. For detailed

tutorials, please refer to the video tutorials and the manual. Also, the demos presented in this page

are also available in the video below

Create a GUI for structured data
In the example below, the GUI definition was created automatically, from the data structure

definition of a nested pydantic BaseModel (including the validation rules, in yellow).

from fiatlight.demos.tutorials.pydantic_gui import demo_basemodel_app
demo_basemodel_app.main()

https://share.descript.com/view/tbvYBh3rpRF
https://share.descript.com/view/tbvYBh3rpRF

Create a GUI for any function
Simply call fl.run with a function or a list of functions, and Fiatlight will automatically generate a

GUI for them.

For technical readers: See the source code for demo_basemodel_app.py. The GUI was created

automatically, from a nested Pydantic model, with custom validator.

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/demos/tutorials/pydantic_gui/demo_basemodel_app.py

Part 1: Standard Python code (no user interface)
--
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt

def lissajous_curve(freq1: float = 5.0, freq2: float = 4.0, delta: float = np.pi /
 """Creates a Lissajous curve, and returns a Matplotlib figure."""
 t = np.linspace(0, 2 * np.pi * nb_periods, 10_000)
 x = np.sin(freq1 * t + delta)
 y = np.sin(freq2 * t)
 fig, ax = plt.subplots()
 ax.plot(x, y)
 return fig

Part 2: Add a GUI to the code in a few seconds

import fiatlight as fl

Options for widgets
fl.add_fiat_attributes(
 lissajous_curve,
 freq1__range=(0, 10), freq2__range=(0, 10), delta__range=(-np.pi, np.pi),
 nb_periods__range=(0.1, 10), nb_periods__edit_type="knob",
)
Run the function interactively
fl.run(lissajous_curve, app_name="Interactive Lissajou Curve")

See the application in action in the video below

From Idea to App in 3 minutes
Create a full application in just 4 lines of Python by chaining pure Python functions into an

interactive graph. This graph visually displays each function’s inputs and outputs, allowing for

manual input adjustments.

Example: The application below is a meme generator. It is a simple composition of an AI image

generator, and a function that adds text onto an image

This can be used as a full application:

All inputs are saved: prompt, and meme text, font, color, position of the text

All preferences are saved: window size, position, and layout of the nodes

The user can save and load different state of the application (i.e. different memes)

import fiatlight as fl
from fiatlight.fiat_kits.fiat_ai import invoke_sdxl_turbo
from fiatlight.fiat_kits.fiat_image.add_meme_text import add_meme_text

Run the composition to create a simple app
fl.run([invoke_sdxl_turbo, add_meme_text], app_name="Old school meme generator")

Domain-specific Kits:
fiatlight.fiats_kits is intended to provide a set of pre-built functions and widgets for various

domains, such as:

Image analysis: Sophisticated image analysis and manipulation widgets. See fiat_image.

Data Visualization: Display interactive data plots and charts for real-time data analysis, using

MatPlotlib or ImPlot. See fiat_matplotlib, and fiat_implot (for ImPlot)

Data Exploration: Provide widgets for exploring dataframes. See fiat_dataframe.

AI: (Draft) Provide a widget for Prompt entry, and an interface to Stable Diffusion. See fiat_ai.

Image analysis
The example below shows an image which undergoes a pipeline for a dilated edge extraction. The

image viewer can pan & zoom the images in sync, and display the pixel values

For technical readers: invoke_sdxl_turbo provides a simple wrapper to SDXL, and

add_meme_text is a Python function that adds colored text onto an image.

import fiatlight as fl
from fiatlight.fiat_kits.fiat_image import image_from_file
from fiatlight.demos.images.demo_canny import canny, dilate

fl.run([image_from_file, canny, dilate], app_name="demo_computer_vision")

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_kits/fiat_ai
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_kits/fiat_ai/invoke_sdxl_turbo.py
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/demos/images/old_school_meme.py

Data visualization with Matplotlib and ImPlot

In the example below, we display figures using ImPlot (left) and Matplotlib (right). Each figure

provides user-settable parameters (in a given range, with customizable widgets). The sine wave

function is updated in real time.

For technical readers: image_from_file is a function that reads an image from a file, canny

applies the Canny edge detection algorithm, and dilate dilates the edges.

from fiatlight.demos.plots import demo_mix_implot_matplotib

demo_mix_implot_matplotib.main()

https://github.com/epezent/implot
https://matplotlib.org/
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_kits/fiat_image/image_to_from_file_gui.py
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/demos/images/opencv_wrappers.py
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/demos/images/opencv_wrappers.py

Data Exploration

In the example below, we display a data frame from the famous titanic example with filtering.

For technical readers:

when a function returns a matplotlib.figure.Figure , its output will be displayed as a

plot. See demo_matplotlib.py source code.*

when a function returns a fiat_implot.FloatMatrix_Dim1 or

fiat_implot.FloatMatrix_Dim2 (which are aliases for np.ndarray), its output will be

displayed as a plot, using ImPlot. See demo_implot source code.

ImPlot is a plotting library for Dear ImGui. It is often faster than Matplotlib, and can be

used in real-time applications. For a complete demo of ImPlot, click here: ImPlot complete

demo*

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_kits/fiat_matplotlib/demo_matplotlib.py
https://github.com/epezent/implot
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_kits/fiat_implot/demo_implot.py
https://github.com/epezent/implot
https://traineq.org/implot_demo/src/implot_demo.html
https://traineq.org/implot_demo/src/implot_demo.html

AI - Image generation

Example: the application below generates images using a stable diffusion model, and enables to

add effects to it (color transformation, add colored edges).

from fiatlight.fiat_kits.fiat_dataframe import dataframe_with_gui_demo_titanic
dataframe_with_gui_demo_titanic.main()

import fiatlight as fl
from fiatlight.fiat_kits.fiat_ai import invoke_sdxl_turbo
from fiatlight.fiat_kits.fiat_image import lut_channels_in_colorspace
from fiatlight.demos.images.toon_edges import add_toon_edges

fl.run([invoke_sdxl_turbo, lut_channels_in_colorspace, add_toon_edges], app_name="S

Visualize, Understand, Innovate

Visualize the Pipeline flow

Example: the application below looks for the most frequent words in a given text file (here with the

text from “Hamlet”), by applying a pipeline of transformations. It is possible to inspect the input

and outputs of each function.

For technical readers: invoke_sdxl_turbo uses HuggingFace’s diffuser library to invoke

stable diffusion. See its source code

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_kits/fiat_ai/invoke_sdxl_turbo.py

Examine and understand function internals

fiatlight provides you with powerful tools to visually debug the intermediate states of your function.

Example: the function add_toon_edges below is a complex function that adds a toon effect to an

image. We can visualize the intermediate internal variables of the function (edges, dilated edges),

even if they are not returned by the function.

from fiatlight.demos.string import demo_word_count
demo_word_count.main()

For technical readers: demo_word_count will simply chain the following string functions:

text_from_file, str_lower, split_words, filter_out_short_words, sort_words,

run_length_encode, sort_word_with_counts . See its source

import fiatlight as fl
from fiatlight.fiat_kits.fiat_image import ImageU8_GRAY, ImageU8_3, image_source
from fiatlight.demos.images.toon_edges import add_toon_edges

fl.run([image_source, add_toon_edges], app_name="Toon Edges")

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/demos/string/demo_word_count.py

For technical readers: the function add_toon_edges has an attribute fiat_tuning that

contains the internal variables that will be displayed. See demos/images/toon_edges.py.

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/demos/images/toon_edges.py

Replay and debug function errors

Example: the following application raises an error. However, this error can be replayed, with the

exact same inputs to facilitate the debugging

Full-fledged Applications
Besides being extremely powerful to generate function graphs, Fiatlight’s powerful GUI capabilities

can also help you generate sophisticated classic applications.

import fiatlight as fl
import math

def float_source(x: float) -> float:
 """A source where the user can specify an input value."""
 return x
def sin(x: float) -> float:
 return math.sin(x)
def log(x: float) -> float:
 return math.log(x)

fl.run([float_source, sin, log], app_name="Replay error")

For technical readers: the function log will raise an error when x is negative. Once you click

on the “Debug this exception” button, you will be able to debug it:

Applications with advanced GUI

The example below shows an application which:

reuses the sophisticated GUI provided by Fiatlight in a standard application

automatically, Save and reloads its state, and GUI presentation options

provides dockable windows, and a top toolbar

from fiatlight.demos.full_fledged_app import demo_image_processors_app
demo_image_processors_app.main()

Custom Graph Creation
Create custom graphs with a drag-and-drop interface, similar to Scratch, enabling a visual

approach to building workflows.

Example: in the image below, its is possible to add and link function nodes:

For technical readers: See the source code for demo_image_processors_app.py*.

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/demos/full_fledged_app/demo_image_processors_app.py

Custom Widgets
Define custom ranges for data types, create custom widgets, and leverage special function

attributes like async, live, and ranges for enhanced functionality and performance.

Example: display and play a sound wave with a custom widget

from fiatlight.demos.custom_graph import demo_custom_graph
demo_custom_graph.main()

For technical readers: See the source code for custom_graph.py

import fiatlight as fl
from fiatlight.fiat_kits.experimental.fiat_audio_simple import sound_wave_from_file
fl.run(sound_wave_from_file, app_name="Sound Wave Player")

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/demos/custom_graph/demo_custom_graph.py

Fiatlight is best suited for:

Rapid Prototyping – Quickly transform ideas into interactive applications with minimal effort.

Fine-Tuning & Debugging – Inspect intermediate states, visualize function outputs, and

replay errors.

Education – Teach programming, data science, and algorithm design with interactive tools.

Data Exploration – Analyze, filter, and visualize complex datasets in real-time.

For technical readers: sound_wave_from_file is a function that returns a sound wave from a

file, and the widget is a custom widget that displays the sound wave and allows you to play it.

See its source code

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_kits/experimental/fiat_audio_simple/sound_wave_player_gui.py

AI & Machine Learning – Prototype AI models, fine-tune hyperparameters, and visualize

results dynamically.

Application Development – Prototypes built with Fiatlight can be seamlessly transitioned

into full applications using Dear ImGui. Since Dear ImGui’s API is nearly identical in Python

and C++, porting to C++ is straightforward.

How does Fiatlight compare to other tools? See the full comparison.

Installation

Installation from source

Install imgui-bundle (from the main branch)

Fiatlight relies on imgui-bundle, and will depend on the latest version on the main branch (version

1.5.2 from pypi is not sufficient).

To install it, you can

either clone it and install it from source:

%%bash

git clone https://github.com/pthom/fiatlight.git
cd fiatlight

Optional: create a virtual environment
(you can use whichever method you prefer)
python3 -m venv venv
source venv/bin/activate

pip install -r requirements.txt
pip install -v -e .

or download pre-compiled recent wheels from here:  pthom/imgui_bundle

Installation from PyPI

Install optional dependencies

Several requirements files are provided, which you can install via pip install -r

requirements-<name>.txt :

requirements.txt: basic requirements

requirements-ai.txt: requirements for AI demos

requirements-audio.txt: requirements for audio demos

requirements-dev.txt: requirements for development

Note: for AI demos, you will have to install torch manually, as its installation is dependent on your

system configuration. See https://pytorch.org/get-started/locally/ (you will of course need a GPU to

run the demos)

git clone https://github.com/pthom/imgui_bundle.git
cd imgui_bundle
git submodule update --init --recursive # (1)
pip install -v . # (2)
pip install opencv-python
pip install pyGLM

Not available yet

https://github.com/pthom/imgui_bundle/actions/workflows/wheels.yml
https://pytorch.org/get-started/locally/

Video Tutorials

Tutorials list

Advanced Tutorial

This tutorial walks through the creation of an interactive sorting algorithm visualizer using Fiatlight,

in order to explain more advanced features.

GUI for Pydantic Models

Learn how Fiatlight can instantly generate GUIs from Python dataclasses and Pydantic models.

Key Topics:

Create GUIs for Pydantic models and

functions

Customize outputs with ImPlot charts

Use Fiatlight’s function graph to build

complex workflows

Register custom GUIs for types

Run functions asynchronously with real-time

updates

Build function graphs with GUI and

documentation nodes

Use Fiatlight GUIs inside a standalone app

https://share.descript.com/view/oBub1WN28bX
https://share.descript.com/view/oBub1WN28bX

Fiatlight Architecture

A high-level overview of Fiatlight’s internal structure and how it automatically maps functions and

data types to UI components.

Full Demo of Fiatlight

Overview:

This video provides a complete walkthrough of Fiatlight, showcasing how it can rapidly generate

UIs for various applications. It is a demo, rather than a tutorial.

Key Features:

Customizing widgets with

fiat_attributes

Automatic validation for user inputs

Displaying structured data with interactive

components

Key Topics:

Core components: AnyDataWithGui ,

FunctionWithGui , FunctionGraph

How Fiatlight registers data types to

generate interactive UIs

Customization callbacks to fine-tune how

data is presented

https://share.descript.com/view/CxaFQ5T6iq7
https://share.descript.com/view/CxaFQ5T6iq7
https://share.descript.com/view/xkgrDb7Kzzj
https://share.descript.com/view/xkgrDb7Kzzj

Sources for these videos
The sources for these tutorials are available in src/python/fiatlight/demos/tutorials.

First Steps

Running functions via Fiatlight

Running a single function

It is extremely simple to run and test a function with FiatLight. Below is a function that accepts a

text path as a parameter and outputs the number of words in this text file.

Highlights:

AI-powered meme generator in just 4 lines

of code

Real-time sorting algorithm visualization

Tailored kits for image processing, data

visualization, and audio analysis

Fine-tuning and debugging with function

state introspection

https://github.com/pthom/fiatlight/tree/main/src/python/fiatlight/demos/tutorials
https://share.descript.com/view/tbvYBh3rpRF
https://share.descript.com/view/tbvYBh3rpRF

Note: TextPath is an alias for str, but it is associated with a file dialog widget in Fiatlight.

Composing two functions

Below we create a simple application with two functions: “int_source” and “add”:

“int_source” generates an integer value

“add” adds two or three integer values.

We specify the range of values for the input parameters of the functions using

either the fl.add_fiat_attributes function,

or the @fl.with_fiat_attributes decorator

Finally, we run the application using the “fl.run” function.

Code

import fiatlight as fl
Note: TextPath is a synonym for str
Within fiatlight, it is associated with a file dialog widget
from fiatlight.fiat_types import TextPath

def count_words(filename: TextPath) -> int:
 """Count the number of words in a text file."""
 with open(filename, "r") as f:
 text = f.read()
 return len(text.split())

Run the application
fl.run(count_words, app_name="Count Words")

import fiatlight as fl

def int_source(x: int) -> int:
 """int_source is the first function of the application
 Since it is not linked to any other function, fiatlight will ask
 the user to specify the value of "x".
 As such, it serves as a source for the next function.
 """
 return x

Customize the GUI for the `int_source` function. Below, we specify
the range of values for "x" by adding "fiat_attributes"
fl.add_fiat_attributes(int_source, x__range=(0, 100))

This second function adds the values of "a", "b", and "c"
In this case, we add fiat_attributes using a decorator
to specify the range of values for "a" and "b"
@fl.with_fiat_attributes(a__range=(0, 10), b__range=(0, 20))
def add(a: int, b: int = 0, c: int | None = None) -> int:
 """add is the second function of the application
 It adds the values of "a", "b", and "c" and returns the result.

 In the interface:
 - "a" is linked to the output of int_source and is unspecified
 until "x" is specified in int_source.
 - "b" is equal to its default value (0). It is shown in gray to
 indicate that it is using the default value.
 - "c" is an optional, equal to its default value (None). It is also shown in gr
 In order to specify a value for "c", the user must first click on the
 "Set" button, to specify that this optional has a value, and then specify the
 """
 if c is None:
 c = 0
 return a + b + c

Run the application, which is a GUI around the composition of the two functions
Notes:
- if running a single function, you can use fl.run(your_function)
- the app_name parameter is optional. It defines the name of the settings file,
fl.run([int_source, add], app_name="First Example")

The image above shows the default state of the application

Video Tutorial of the available controls

The video below shows how to interact with the widgets in a function node

Save / Load user settings

Automatic user settings saving

int_source:

“x” is unspecified

add:

“a” is linked to the output of int_source and is unspecified, since int_source can not

be executed (until “x” is specified)

“b” is equal to its default value (0). It is shown in gray to indicate that it is using the

default value.

“c” is equal to its default value (None). It is also shown in gray.

0:00

Upon exit, Fiatlight automatically saves the user’s settings in a folder named fiat_settings in the

current directory.

The settings are named after the app_name param passed to `fl.run (if app_name is not set, the

settings file will use the name of the main application module)

.

Three files are saved each time the application saves the settings:

First_Example.fiat_user.json: user settings (values of the parameters of the functions)

First_Example.node_editor.json: settings for the node editor (positions of the nodes)

First_Example.ini: settings for Dear ImGui (since and positions of the window)

Manually save the user settings

When you manually save the user inputs by clicking on the menu “File / Save user settings”, the

user settings are saved in a file named “xxx.fiat_user.json”, where “xxx” is the file name you

selected.

Manual
Begin with the First steps section to learn how to wrap functions and dataclasses and run them via

Fiatlight.

Then, explore the following sections.

Introductory topics:

Add types to signatures so that Fiatlight can generate a GUI for your functions

Use fiatlight command line tool to list all supported types and their possible GUI customization

options

Customize widgets using fiat_attributes

Fully customize any parameter’s GUI by writing it by hand

Add GUI only nodes to your functions graph (i.e. nodes that do not have a function associated

with them)

Run functions asynchronously

Create GUI for structured data, i.e pydantic models and dataclasses

Advanced topics:

Validate inputs in the GUI

Reuse Fiatlight widgets in your own apps, not only in Fiatlight’s functions graphs.

Fully customize functions GUI subclassing FunctionWithGui

Fine-tune functions by viewing their internal status. Debug and replay exceptions.

Create complex functions graph

Create and register custom widgets for specific types

Domain-specific topics:

Explore fiat_kits, collections of pre-built widgets for specific domains, such as:

fiat_image for image processing

fiat_matplotlib for plotting with Matplotlib

fiat_dataframe: a widget to display explore pandas dataframes

TODO: manual_reuse_widgets

Wrapping Functions

In this tutorial, we will see how to wrap functions in order to make them compatible with Fiatlight.

Most of the time, functions are wrapped automatically. In the example below, the function

times_two is wrapped automatically by Fiatlight into a FunctionWithGui object:

FunctionWithGui is one of the core classes of FiatLight: it wraps a function with a GUI that

presents its inputs and outputs.

Documentation: See its API for detailed information.

Source code: View its full code online.

Typed Signatures

Importance of Typed Signatures

To automatically create a GUI for function parameters, Fiatlight requires type information for both

the parameters and the return value of the functions. This is achieved using type hints in the

function signature.

For example, an untyped function signature looks like this:

In contrast, a typed version is:

import fiatlight as fl
def times_two(x: int) -> int:
 return x * 2
fl.run(times_two, app_name="Times two") # the function will be wrapped automatical

In order to be wrapped automatically, a function must have a typed signature (see Typed

signatures).

def foo(a, b):
 return a + b

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_core/function_with_gui.py

Typed vs Untyped Functions GUI

In the example below, math.sin and math.cos are unfortunately not typed. my_cos is a wrapper

around math.cos that includes type information.

Code

def foo(a: int, b: float) -> float:
 return a + b

More information about type hints can be found in PEP 484. Type hints specify the type of a

variable in Python. They are not mandatory but are a good practice, as they help catch bugs

early in the development process.

https://www.python.org/dev/peps/pep-0484/

import math
import fiatlight as fl

def float_source(x: float) -> float:
 """A float source, where the user can specify the value of x."""
 return x

def my_cos(x: float) -> float:
 """A wrapper around math.cos that adds types,
 so that Fiatlight can infer the widgets in the GUI."""
 return math.cos(x)

We create a graph of functions, to which we will add functions manually
graph = fl.FunctionsGraph()

Add a node that will run math.cos: since this function has no type information,
Fiatlight **will not** be able to infer the widgets in the GUI)
graph.add_function(math.cos)

Add a node that will run my_cos: since this function has type information,
Fiatlight **will** be able to infer the widgets in the GUI
graph.add_function(my_cos)

Add a function composition that will transfer the output of float_source to math.
(in this case, math.sin will work correctly, since it only has to display the num
and does not require an edition widget)
graph.add_function_composition([float_source, math.sin])

Run the graph
fl.run(graph, app_name="Typed Signatures")

Visual Output: The image above shows the result of running the above code. Notice the

differences in GUI behavior for typed vs untyped functions.

Key Points:

Since cos is untyped, it is impossible to enter a value for its input parameter.

The function sin , however, works correctly in the graph since it receives an input from

float_source and does not require an edition widget.

Wrapping Functions

Creating a wrapper is often extremely simple and necessary when dealing with untyped functions.

Wrapping a function allows you to add type information, making it compatible with Fiatlight’s GUI

capabilities. Let’s see how to wrap the math.cos function.

Why Create a Wrapper?

The math.cos function from Python’s standard library does not have type annotations. Without

these annotations, Fiatlight cannot automatically create a GUI for it. By creating a wrapper, we add

the necessary type information.

Example: Wrapping math.cos

Below, we create a simple wrapper for math.cos that includes type annotations. This allows

Fiatlight to generate a GUI for the function.

When running the above code, Fiatlight generates a GUI that allows you to input a float value for x

and see the result of math.cos(x) .

As an additional benefit, the documentation you wrote in the wrapper is visible in the function

node!

import math
import fiatlight as fl

Original function without type annotations
def my_cos(x: float) -> float:
 """A wrapper around math.cos that adds types, so that Fiatlight can infer the wid

 We added:
 * a type annotations for its parameter (`x: float`)
 * and for its return value (`-> float`)
 """
 return math.cos(x)

Run the wrapped function with Fiatlight
fl.run(my_cos, app_name="Wrapped Cosine Function")

Registered Types

Introduction

Fiatlight maintains a central registry that links data types (e.g., primitive types or custom data

types) with GUI types. This registry allows Fiatlight to automatically create GUIs for functions based

on their type annotations.

For more information:

Gui Registry: See the documentation for detailed information

GUI Types: The GUI Types are all descendant of AnyDataWithGui , which is a generic type

that can be used to create custom widgets for your data types. See its API.

Using registered types

Registered types provide dedicated widgets, enabling automatic GUI creation for function

parameters and outputs.

Below is an extract of the output of the fiatlight types command:

Tip: use the command fiatlight types in a terminal (or console) to list the registered types

and their associated widgets. See “Fiatlight command line utility” for more information.

Example with Matplotlib Figures

Let’s look at an example using TextPath and matplotlib.figure.Figure , which are registered

types in Fiatlight:

fl.fiat_types.TextPath is an alias for str, but it is registered to be displayed with a file

selection dialog.

matplotlib.figure.Figure is registered to be displayed as a plot in the GUI

> fiatlight types
+--+------------------------------
| Data Type | Gui Type
+==+==============================
| int | IntWithGui
| | A highly customizable int w
+--+------------------------------
| float | FloatWithGui
| | A highly customizable float
+--+------------------------------
| str | StrWithGui
| | A Gui for a string with res
| | multiline editing.
+--+------------------------------
| bool | BoolWithGui
| | A bool widget. Can use a ch
+--+------------------------------
| ColorRgb | ColorRgbWithGui
| synonym for tuple[int, int, int] describing an | A nice color picker for RGB
| RGB color, with values in [0, 255] (NewType) |
+--+------------------------------
| ... | ...

import fiatlight as fl
import matplotlib.figure
import matplotlib.pyplot as plt

def words_length_histogram(text_file: fl.fiat_types.TextPath) -> matplotlib.figure.
 "Create a histogram of the lengths of words in a text file."
 with open(text_file) as f:
 text = f.read()
 words = text.split()
 lengths = [len(word) for word in words]
 fig, ax = plt.subplots()
 ax.hist(lengths, bins=range(0, 20))
 ax.set_title("Word Length Histogram")
 ax.set_xlabel("Word Length")
 ax.set_ylabel("Frequency")
 return fig

fl.run(words_length_histogram, app_name="Registered types")

Controlling Function Execution

By default, the function will be called only when one of its inputs has changed (either because the

user entered a new value, or because an input is connected to another function that has changed).

You can control the behavior of the function by setting attributes on the function object.

invoke_async (default=False): if set to True, the function will be called asynchronously

invoke_manually (default=False): if set to True, the function will be called only if the user

clicks on the “invoke” button

invoke_always_dirty (default=False): if set to True, the function output will always be

considered out of date. Depending on the value of invoke_manually :

if “invoke_manually” is True, the “Refresh needed” label will be displayed

if “invoke_manually” is False, the function will be called at each frame

Configuring “Live” functions

Example: a live function that display a camera image

Note: a “live” function is thus a function with invoke_manually=False and

invoke_always_dirty=True

import fiatlight as fl
from fiatlight.fiat_kits.fiat_image import ImageU8_3
import cv2 # we use OpenCV to capture the camera image (pip install opencv-python)
cap = cv2.VideoCapture(0) # you will need a camera!

def get_camera_image() -> ImageU8_3 | None:
 ret, frame = cap.read()
 return ImageU8_3(frame) if ret else None

Set flags to make this a live function (called automatically at each frame)
fl.add_fiat_attributes(get_camera_image, invoke_always_dirty=True)

fl.run(get_camera_image, app_name="Live camera image")

Using Async Functions

Example: an async function

When your function is slow, you can set the invoke_async flag to True. In the example below, the

yellow spinner indicates that the function is running, while keeping the GUI responsive.

“Stoppable” async Functions

In the case of async function, you may also set:

invoke_async_stoppable (default=False): if true a GUI button will be displayed to stop the

async function while it is running.

In this case, you will need to check the flag invoke_async_shall_stop in your function to know if

the function should stop.

Example:

import fiatlight as fl
import time
def slow_function() -> int:
 time.sleep(5)
 return 42

fl.add_fiat_attributes(slow_function, invoke_async=True)
fl.run(slow_function, app_name="Async function")

Note:
You can also use the `@fl.with_fiat_attributes` decorator to set the flags direct
@fl.with_fiat_attributes(invoke_async=True)
def slow_function() -> int:
...

Manual Invocation Example

Example: a function that needs to be called manually

If you set the invoke_manually flag to True, the function will be called only when the user clicks

the “invoke” button (indicated by a “recycle” icon). If the inputs have changed, a “Refresh needed”

label will be displayed.

Handwriting the GUI

Using Edit and Present Callbacks

You can also customize the GUI for a parameter or output by setting custom callbacks function,

namely the “edit” and “present” callbacks.

def my_async_function():
 # ... # some initialization
 while True: # inner loop of the function processing (can be any form of loop)
 # ... # some processing
 if hasattr(my_async_function, "invoke_async_shall_stop") and my_async_funct
 my_async_function.invoke_async_shall_stop = False # reset the flag
 break
 # ... # continue the function processing

import fiatlight as fl
def my_function(a: int, b: float) -> float:
 return a + b

fl.add_fiat_attributes(my_function, invoke_manually=True)
fl.run(my_function, app_name="Manual invocation")

In this case, you will first wrap the function in a FunctionWithGui object, and then set the

callbacks for the parameter or output.

For more information, see:

AnyDataWithGui: See the API for detailed information.

AnyDataWithGuiCallbacks: See the API for detailed information.

Example: Custom Callbacks

In this example, we define custom edit and present callbacks for the function fahrenheit_to_celsius.

The resulting GUI allows the user to input a temperature in Fahrenheit using a custom slider and

see the converted temperature in Celsius with a color-coded note indicating whether it is cold,

warm, or hot.

import fiatlight as fl

def my_function(a: int) -> float:
 return a * 4

my_function_gui = fl.FunctionWithGui(my_function)

A callback to edit the parameter. Receive the current value, and return a tuple (
my_function_gui.input("a").callbacks.edit = ...

A callback to present the output. Receive the current value, and return None
my_function_gui.output().callbacks.present = ...

Customizing Widgets with Fiat Attributes

Introduction

Fiat attributes allow you to customize various aspects of the GUI for function nodes, dataclasses,

and pydantic models. They provide a powerful way to modify the appearance and behavior of

import fiatlight as fl
from imgui_bundle import imgui, hello_imgui, ImVec4

def fahrenheit_to_celsius(fahrenheit: float = 0) -> float:
 return (fahrenheit - 32) * 5 / 9

This will be our edit callback: it accepts a float and returns a tuple (bool, flo
where the first element is True if the value has changed, and the second element
def edit_temperature(fahrenheit: float) -> tuple[bool, float]:
 imgui.text("This is our custom edit callback")
 # Set the width of the slider field to 10 em units (using em units is a good pr
 imgui.set_next_item_width(hello_imgui.em_size(10))
 changed, new_value = imgui.slider_float("Fahrenheit", fahrenheit, -100, 200)
 return changed, new_value

This will be our present callback: it accepts a float and returns None
def present_temperature(celsius: float) -> None:
 imgui.text("This is our custom present callback")
 note = "Cold" if celsius < 20 else "Hot" if celsius > 40 else "Warm"
 color = ImVec4(0, 0.4, 1, 1) if celsius < 20 else ImVec4(1, 0.4, 0, 1) if celsi
 imgui.text_colored(color, f"{celsius:.2f} °C ({note})")

fahrenheit_to_celsius_gui = fl.FunctionWithGui(fahrenheit_to_celsius)
fahrenheit_to_celsius_gui.output().callbacks.present = present_temperature
fahrenheit_to_celsius_gui.input("fahrenheit").callbacks.edit = edit_temperature

fl.run(fahrenheit_to_celsius_gui, app_name="Custom callbacks")

function parameters and outputs, adjust the GUI for dataclasses, control how function nodes run

(e.g., asynchronously or manually), set labels and tooltips for function nodes and parameters, and

validate function parameters and dataclass fields.

There are two main ways to add attributes to a function:

using a decorator: @fl.with_fiat_attributes on top of the function definition

using the fl.add_fiat_attributes function elsewhere in the code

Why Customize Widgets?

As an example, let’s consider the function “my_asin” below: if you run this function with run() , the

GUI will allow the user to enter any float value for x. This lets the user enter values that may not be

valid for the function.

For more details on customizing dataclasses and pydantic models, see the GUI Registry

documentation.

import fiatlight as fl

Ideally, we would like to restrict the range of x to [-1, 1]
def my_asin(x: float = 0.5) -> float:
 import math
 return math.asin(x)

fl.run(my_asin, app_name="No range restriction")

Adding Attributes with a Decorator

It is possible to customize the GUI for parameters using function attributes: below, we set the range

for x. As a consequence it will be displayed with a slider widget with a range from -1 to 1.

Adding Attributes Manually

If you do not wish or cannot modify the function definition, you can use the add_fiat_attributes

function to add attributes to the function. This way, your function stays unmodified, and you can

specify the attributes only when creating its GUI.

import fiatlight as fl

Use the `with_fiat_attributes` decorator to set custom fiat attributes for the fu
Here, we set the range of the x parameter.
Important: note the double underscore ("_") after the parameter name!
@fl.with_fiat_attributes(x__range=(-1, 1))
def my_asin(x: float = 0.5) -> float:
 import math
 return math.asin(x)

fl.run(my_asin, app_name="Range restriction")

import fiatlight as fl

def my_asin(x: float = 0.5) -> float:
 import math
 return math.asin(x)

Important: note the double underscore ("_") after the parameter name!
fl.add_fiat_attributes(my_asin, x__range=(-1, 1))
fl.run(my_asin, app_name="Range restriction")

Listing Available Fiat Attributes

To customize the GUI for function parameters or outputs, you can list the available fiat attributes for

a specific type using the Fiatlight command line utility.

Use the command fiatlight gui int in a terminal (or console) to list available fiat attributes for the int

type. For other types, replace int with the type you are interested in.

For more information, see “Fiatlight command line utility”.

Below is an extract of the output of fiatlight gui int :

Example: Fiat Attributes in Action

In the example below, we customize the GUI for the function interactive_histogram by setting

fiat attributes for the number of data points, the number of bars, the mean, and the standard

deviation.

GUI type: int
==============
A highly customizable int widget.
Available fiat attributes for IntWithGui:
+--------------------+-----------------+-----------+--------------------------------
| Name | Type | Default | Explanation
+====================+=================+===========+================================
| range | tuple[int, int] | (0, 10) | Range of the integer
+--------------------+-----------------+-----------+--------------------------------
| edit_type | str | input | Type of the edit widget. Possib
| | | | slider, input, drag, knob,
| | | | slider_and_minus_plus
+--------------------+-----------------+-----------+--------------------------------
| format | str | %d | Format string for the value
+--------------------+-----------------+-----------+--------------------------------
| ... | ... | |

Available fiat attributes for AnyDataWithGui Generic attributes:
--
+-------------+--------+---------------------+--------------------------------------
| Name | Type | Default | Explanation
+=============+========+=====================+======================================
| label | str | | A label for the parameter. If empty,
| | | | function parameter name is used
+-------------+--------+---------------------+--------------------------------------
| validator | object | None | Function to validate a parameter valu
| | | | raise a ValueError if invalid, or ret
| | | | value (possibly modified)
+-------------+--------+---------------------+--------------------------------------
| ... | ... | |

import fiatlight
import matplotlib; matplotlib.use('Agg') # Required to display the figure in the G
from matplotlib.figure import Figure

@fiatlight.with_fiat_attributes(
 # Label displayed as the title of the function node
 label="Interactive histogram",

 # Edit the number of data points with a logarithmic slider
 # Note: by default, you can ctrl+click on a slider to input a value directly,
 # this is disabled here with nb_data__slider_no_input
 nb_data__label="Nb data",
 nb_data__edit_type="slider",
 nb_data__range=(100, 1_000_000),
 nb_data__slider_logarithmic=True,
 nb_data__slider_no_input=True,

 # Edit the number of bars with a knob
 n_bars__label="Number of bars",
 n_bars__edit_type="drag",
 n_bars__range=(1, 300),

 # Edit the average with a slider for a float value with any range
 # (the slider range will adapt interactively, when dragging far to the left or
 average__label="Mean",
 average__edit_type="slider_float_any_range",
 average__range=(-5, 5),

 # Edit the standard deviation with a drag
 sigma__label="Std deviation",
 sigma__edit_type="knob",
 sigma__range=(0.1, 5),

)
def interactive_histogram(
 nb_data: int = 4000, n_bars: int = 50, sigma: float = 1, average: float = 500
) -> Figure:
 '''Generate an interactive histogram with adjustable number of bars, mean, and
 import numpy as np
 import matplotlib.pyplot as plt

 data = np.random.normal(loc=average, scale=sigma, size=nb_data)
 bins = np.linspace(np.min(data), np.max(data), n_bars)
 fig, ax = plt.subplots()
 ax.hist(data, bins=bins, color="blue", alpha=0.7)
 return fig

fiatlight.run(interactive_histogram, app_name="Fiat attributes")

Gui Registry
fiatlight.fiat_togui is the central module that is able to associate a GUI with a type.

It uses sophisticated mechanisms to inspect the type of function parameters and return values.

It handles a registry of types and their associated GUIs, to which you can add your own types, by

calling fiatlight.register_type(DataType, DataTypeWithGui) , where DataType is the type

you want to register, and DataTypeWithGui is the class that will handle the GUI for this type.

DataTypeWithGui must inherit from AnyDataWithGui and implement the necessary callbacks.

Explore the registry

The fiatlight command line utility is a powerful tool that allows you to explore the available

widgets and types in Fiatlight. It can be used to list the available types, to print the GUI info for a

given type, and to run a GUI demo for a given type.

Here is the help message for the fiatlight command line utility:

See the page Tutorials/fiatlight command line utility for more information.

Primitive types

The primitive types int , float , str , bool are registered by default.

%%bash
fiatlight --help

INFO: Showing help with the command 'fiatlight -- --help'.

NAME
 fiatlight

SYNOPSIS
 fiatlight COMMAND

COMMANDS
 COMMAND is one of the following:

 types
 List registered types, with a possible query to filter them. Add an optional

 gui
 Print the info and fiat attributes available for a given type. Add the dataty

 fn_attrs
 Display the available fiat attributes for a function

Basic example

Example with custom GUI options

The GUI for these primitive types is extensively configurable via fiat attributes. Below, we customize

the GUI for the celsius parameter to be a slider ranging from 0 to 100, with a specific format for

displaying the value.

See FunctionWithGui for a comprehensive list of all the available attributes (in the “Customizing

parameters GUI” section).

import fiatlight as fl
def foo(a: float, b: float = 3.0, times_two: bool = False) -> float:
 return (a + b) * (2 if times_two else 1)

Run an app that displays the GUI for the function
where the user can input the values of the parameters
(or use the default values)
fl.run(foo, app_name="Primitive Basic")

import fiatlight as fl

@fl.with_fiat_attributes(celsius__range=(0, 100), celsius__format="%.1f °C")
def to_fahrenheit(celsius: float) -> float:
 return celsius * 9 / 5 + 32

fl.run(to_fahrenheit, app_name="Primitive Custom")

Range limited numeric types

As a convenience, Fiatlight includes those predefined types for which the GUI will take into account

their boundings.

File name types

Several file types names are registered by default. They are synonyms for str and are used to

specify file paths. They will be presented with a file dialog in the GUI.

from typing import NewType

Float types with specific ranges (bounds included)
Float_0_1 = NewType("Float_0_1", float) # 0 to 1
Float_0_1.__doc__ = "synonym for float in [0, 1] (NewType)"

Float__1_1 = NewType("Float__1_1", float) # -1 to 1
Float__1_1.__doc__ = "synonym for float in [-1, 1] (NewType)"

PositiveFloat = NewType("PositiveFloat", float) # Any positive float (strictly gr
PositiveFloat.__doc__ = "synonym for float > 0 (strictly greater than 0) (NewType)"

Int types with specific ranges (bounds included)
Int_0_255 = NewType("Int_0_255", int) # 0 to 255
Int_0_255.__doc__ = "synonym for int in [0, 255] (NewType)"

from fiatlight.fiat_notebook import look_at_code
%look_at_python_code fiatlight.fiat_types.file_types

Color types
Several color types are registered by default.

from typing import NewType

FilePath is a synonym of str, but when used as a function parameter,
it will be displayed as a widget where you can select a file.
FilePath = NewType("FilePath", str)
FilePath.__doc__ = "synonym for str, describing a file path (NewType)"
FilePath_Save is a synonym of str, but when used as a function parameter,
it will be displayed as a widget where you can select a file to save to.
FilePath_Save = NewType("FilePath_Save", str)
FilePath_Save.__doc__ = "synonym for str, describing a file path for saving (NewType

With ImagePath, you can select an image file.
ImagePath = NewType("ImagePath", FilePath)
ImagePath.__doc__ = "synonym for str, describing an image file path (NewType)"
ImagePath_Save = NewType("ImagePath_Save", FilePath_Save)
ImagePath_Save.__doc__ = "synonym for str, describing an image file path for saving

With TextPath, you can select a text file.
TextPath = NewType("TextPath", FilePath)
TextPath.__doc__ = "synonym for str, describing a text file path (NewType)"
TextPath_Save = NewType("TextPath_Save", FilePath_Save)
TextPath_Save.__doc__ = "synonym for str, describing a text file path for saving (Ne

With AudioPath, you can select an audio file.
AudioPath = NewType("AudioPath", FilePath)
AudioPath.__doc__ = "synonym for str, describing an audio file path (NewType)"
AudioPath_Save = NewType("AudioPath_Save", FilePath_Save)
AudioPath_Save.__doc__ = "synonym for str, describing an audio file path for saving

With VideoPath, you can select a video file.
VideoPath = NewType("VideoPath", FilePath)
VideoPath.__doc__ = "synonym for str, describing a video file path (NewType)"
VideoPath_Save = NewType("VideoPath_Save", FilePath_Save)
VideoPath_Save.__doc__ = "synonym for str, describing a video file path for saving (

%look_at_python_code fiatlight.fiat_types.color_types

from typing import NewType
from imgui_bundle import ImVec4

ColorRgb = NewType("ColorRgb", tuple[int, int, int])
ColorRgb.__doc__ = "synonym for tuple[int, int, int] describing an RGB color, with v

ColorRgba = NewType("ColorRgba", tuple[int, int, int, int])
ColorRgba.__doc__ = "synonym for tuple[int, int, int, int] describing an RGBA color,

ColorRgbFloat = NewType("ColorRgbFloat", tuple[float, float, float])
ColorRgbFloat.__doc__ = (
 "synonym for tuple[float, float, float] describing an RGB color, with values in
)

ColorRgbaFloat = NewType("ColorRgbaFloat", tuple[float, float, float, float])
ColorRgbaFloat.__doc__ = (
 "synonym for tuple[float, float, float, float] describing an RGBA color, with va
)

def _int255_to_float(value: int) -> float:
 return value / 255.0

def _float_to_int255(value: float) -> int:
 return int(value * 255)

def color_rgb_to_color_rgb_float(color_rgb: ColorRgb) -> ColorRgbFloat:
 return ColorRgbFloat(tuple(_int255_to_float(value) for value in color_rgb)) # t

def color_rgba_to_color_rgba_float(color_rgba: ColorRgba) -> ColorRgbaFloat:
 return ColorRgbaFloat(tuple(_int255_to_float(value) for value in color_rgba)) #

def color_rgb_float_to_color_rgb(color_rgb_float: ColorRgbFloat) -> ColorRgb:
 return ColorRgb(tuple(_float_to_int255(value) for value in color_rgb_float)) #

def color_rgba_float_to_color_rgba(color_rgba_float: ColorRgbaFloat) -> ColorRgba:
 return ColorRgba(tuple(_float_to_int255(value) for value in color_rgba_float))

def color_rgb_to_color_rgba(color_rgb: ColorRgb) -> ColorRgba:
 return ColorRgba(color_rgb + (255,))

def color_rgb_float_to_color_rgba_float(color_rgb_float: ColorRgbFloat) -> ColorRgba
 return ColorRgbaFloat(color_rgb_float + (1.0,))

Example: using color types in function

Optional types

If a type is registered, its optional version is also registered.

Example: using an optional color in a function

(In this example, the user needs to click on “Set” to set a value to the optional color)

def color_rgb_to_imvec4(v: ColorRgb) -> ImVec4:
 return ImVec4(v[0] / 255.0, v[1] / 255.0, v[2] / 255.0, 1.0)

def color_rgba_to_imvec4(v: ColorRgba) -> ImVec4:
 return ImVec4(v[0] / 255.0, v[1] / 255.0, v[2] / 255.0, v[3] / 255.0)

def color_rgb_float_to_imvec4(v: ColorRgbFloat) -> ImVec4:
 return ImVec4(v[0], v[1], v[2], 1.0)

def color_rgba_float_to_imvec4(v: ColorRgbaFloat) -> ImVec4:
 return ImVec4(v[0], v[1], v[2], v[3])

import fiatlight as fl
from fiatlight.fiat_types import ColorRgb, ColorRgba

def color_chooser(color1: ColorRgba, color2: ColorRgb) -> str:
 return f"You selected: {color1=}, {color2=}"

fl.run(color_chooser, app_name="Color Chooser")

Lists
A very basic support is provided for lists. It does not allow to edit the values. However, it can

present a list of values using (all of them will be rendered as string using str() function).

import fiatlight as fl
from fiatlight.fiat_types import ColorRgb, ColorRgba

def color_chooser(color: ColorRgb | None = None) -> str:
 return f"You selected: {color=}"

fl.run(color_chooser, app_name="Optional Color")

import fiatlight as fl
from fiatlight.fiat_types import TextPath

def list_words_in_file(filenames: TextPath) -> list[str]:
 with open(filenames) as f:
 return f.read().split()

fl.run(list_words_in_file, app_name="List Words in File")

Enum classes

Enum classes are automatically associated to a GUI.

import fiatlight as fl
from enum import Enum

class Color(Enum):
 Red = 1
 Green = 2
 Blue = 3

def color_chooser(color: Color) -> str:
 return f"You selected: {color.name}"

fl.run(color_chooser, app_name="Enum Color")

Gui Nodes

Gui Nodes are specialized nodes in Fiatlight, dedicated to functions which do not return values but

instead displaying a user interface using ImGui widgets. Gui Nodes are called at every frame,

ensuring that the GUI is always responsive and up-to-date.

Gui Nodes are particularly useful for:

Displaying interactive visualizations (plots, etc)

Creating dashboards

Providing user controls (e.g., sliders, buttons) that alter global variables

Example: Visualizing a Heart Curve with a GUI Node

In this example, we demonstrate how to create a GUI node that visualizes a heart curve. The size of

the heart dynamically changes over time to simulate a heartbeat.

Explanation:

1. time_seconds: This function returns the current time in seconds and is set to always be re-

evaluated at every frame.

2. heart_curve: Generates the x and y coordinates of a heart curve that changes size over time to

simulate a heartbeat.

3. gui_curve: A GUI node that visualizes the heart curve using ImPlot. It updates the curve at

every frame to reflect the beating heart.

Notes:

Gui Nodes are not meant to return values

Your GUI function should be fast. If you need to perform heavy computations, consider

using AnyDataWithGui, where the “on_change” callback can be used to cache heavy

computations.

4. gui_curve is a gui function. So, we wrap it in a GuiNode to display the heart curve with either

GuiNode(gui_curve) or graph.add_gui_node(gui_curve) .

import fiatlight as fl
from imgui_bundle import hello_imgui, implot
import numpy as np
from numpy.typing import ArrayLike
import time

@fl.with_fiat_attributes(invoke_always_dirty=True)
def time_seconds() -> float:
 """Return the current time in seconds.
 This function is marked as always dirty, so it will be re-evaluated at every fr
 """
 return time.time()

def heart_curve(time_: float) -> ArrayLike:
 """Return the x and y coordinates of a heart curve whose size changes over time
 to simulate a heart beating.
 """
 vals = np.arange(0, np.pi * 2, 0.01)
 x0 = np.power(np.sin(vals), 3) * 16
 y0 = 13 * np.cos(vals) - 5 * np.cos(2 * vals) - 2 * np.cos(3 * vals) - np.cos(4

 # Heart pulse rate and time tracking
 heart_pulse_rate = 80
 phase = time_ * heart_pulse_rate / (np.pi * 2)
 k = 0.8 + 0.1 * np.cos(phase)
 return np.array([x0 * k, y0 * k])

def gui_curve(xy: ArrayLike) -> None:
 """Display the heart curve with ImPlot

 This function is a GUI node that displays the heart curve.

 It is called at every frame to update the curve.
 """
 if implot.begin_plot("Heart", hello_imgui.em_to_vec2(21, 21)):
 implot.setup_axes_limits(-15, 15, -15, 11)
 implot.plot_line("", xy[0], xy[1])
 implot.end_plot()

Run the graph
Method 1: Using the run function, and wrapping the gui_curve function in a GuiNod
fl.run([time_seconds, heart_curve, fl.GuiNode(gui_curve)], app_name="HeartCurve")

Method 2: Using a FunctionsGraph
graph = fl.FunctionsGraph()
graph.add_function(time_seconds)
graph.add_function(heart_curve)
graph.add_gui_node(gui_curve) # Add the gui_curve function as a GuiNode
graph.add_link(time_seconds, heart_curve)
graph.add_link(heart_curve, gui_curve)
fl.run(graph, app_name="HeartCurve")

Example: a GUI node with serializable state

When adding a GuiNode, you can pass a serializable data class to store the options of the GUI

function. This allows you to save the state of the GUI function and reload it when restarting the

application.

In the example below, we demonstrate how to create a GUI node that multiplies an input value by a

factor. The factor can be adjusted by the user and is stored in a serializable data class. The factor

value is reloaded upon restarting the application.

Fiatlight command line utility

The fiatlight command line utility is a powerful tool that allows you to explore the available

widgets and types in Fiatlight. It can be used to list the available types, to print the GUI info for a

given type, and to run a GUI demo for a given type.

Here is the help message for the fiatlight command line utility (ignore the %%bash magic

command, it is used to run bash commands in Jupyter notebooks):

import fiatlight as fl
from imgui_bundle import imgui
from pydantic import BaseModel

def input_x(x: int) -> int:
 """a function that will be displayed in the function graph, in order to let the
 return x

class WhatToMultiply(BaseModel):
 """A serializable data class that will be used to store the options of the GUI
 factor: int = 3

WHAT_TO_MULTIPLY = WhatToMultiply()

def gui_x_times_factor(x: int) -> None:
 """A GUI function that multiplies the input by a serializable factor.
 It will be added via graph.add_gui_node(gui_x_times_factor, gui_serializable_da
 It uses a serializable data class to store its options, which will be reloaded
 """
 _, WHAT_TO_MULTIPLY.factor = imgui.input_int("Factor", WHAT_TO_MULTIPLY.factor)
 imgui.text(f"Multiply by a factor: x * {WHAT_TO_MULTIPLY.factor} ={x * WHAT_TO_M

Run the graph
fl.run([input_x, fl.GuiNode(gui_x_times_factor, gui_serializable_data=WHAT_TO_MULTI

List registered types

The types command lists the registered types in Fiatlight. You can filter the types by adding an

optional query.

In the example below, we will run the fiatlight types str command to list all the types that

contain the string “str”.

%%bash
fiatlight --help

INFO: Showing help with the command 'fiatlight -- --help'.

NAME
 fiatlight

SYNOPSIS
 fiatlight COMMAND

COMMANDS
 COMMAND is one of the following:

 types
 List registered types, with a possible query to filter them. Add an optional

 gui
 Print the GUI info for a given type. Add the GUI type name as an argument (if

%%bash
fiatlight types str

+--+------------------------------
| Data Type | Gui Type
+==+==============================
| str | fiatlight.fiat_togui.str_with
| | A Gui for a string with res
| | multiline editing.
+--+------------------------------
| fiatlight.fiat_types.fiat_number_types.PositiveFlo | fiatlight.fiat_togui.primitiv
| at | A highly customizable float
| synonym for float > 0 (strictly greater than 0) |
| (NewType) |
+--+------------------------------
| fiatlight.fiat_types.file_types.FilePath | fiatlight.fiat_togui.file_typ
| synonym for str, describing a file path | A Gui that enable to select
| (NewType) |
+--+------------------------------
| fiatlight.fiat_types.file_types.TextPath | fiatlight.fiat_togui.file_typ
| synonym for str, describing a text file path | A Gui that enable to select
| (NewType) |
+--+------------------------------
| fiatlight.fiat_types.file_types.ImagePath | fiatlight.fiat_togui.file_typ
| synonym for str, describing an image file path | A Gui that enable to select
| (NewType) |
+--+------------------------------
| fiatlight.fiat_types.file_types.AudioPath | fiatlight.fiat_togui.file_typ
| synonym for str, describing an audio file path | A Gui that enable to select
| (NewType) |
+--+------------------------------
| fiatlight.fiat_types.file_types.VideoPath | fiatlight.fiat_togui.file_typ
| synonym for str, describing a video file path | A Gui that enable to select
| (NewType) |
+--+------------------------------
| fiatlight.fiat_types.file_types.FilePath_Save | fiatlight.fiat_togui.file_typ
| synonym for str, describing a file path for | A Gui that enable to select
| saving (NewType) | dialog.
+--+------------------------------
| fiatlight.fiat_types.file_types.TextPath_Save | fiatlight.fiat_togui.file_typ
| synonym for str, describing a text file path for | A Gui that enable to select
| saving (NewType) | file dialog.
+--+------------------------------
| fiatlight.fiat_types.file_types.ImagePath_Save | fiatlight.fiat_togui.file_typ
| synonym for str, describing an image file path | A Gui that enable to select
| for saving (NewType) | file dialog.
+--+------------------------------
| fiatlight.fiat_types.file_types.AudioPath_Save | fiatlight.fiat_togui.file_typ
| synonym for str, describing an audio file path | A Gui that enable to select
| for saving (NewType) | file dialog.
+--+------------------------------
| fiatlight.fiat_types.file_types.VideoPath_Save | fiatlight.fiat_togui.file_typ
| synonym for str, describing a video file path | A Gui that enable to select
| for saving (NewType) | file dialog.
+--+------------------------------
| fiatlight.fiat_kits.fiat_ai.prompt.Prompt | fiatlight.fiat_kits.fiat_ai.p

Notes:

If you do not include the str argument, all the types will be printed.

Print the GUI info for a given type

The gui_info command prints the GUI info for a given type. You can specify the GUI type name or

the data type name as an argument. If you do not provide a type name, all the GUI widget names

will be printed.

Example: Print the GUI info for StrWithGui

In the example below, we will run the fiatlight gui_info StrWithGui command to print the GUI

info for the StrWithGui widget.

| synonym for a string used as a prompt, used for | A Gui to edit a prompt, wit
| AI text and image generation models (NewType) | in a popup.
+--+------------------------------

%%bash
fiatlight gui str

GUI type: str
==============
 A Gui for a string with resizable input text, with a popup for multiline editing.

 Available custom attributes for StrWithGui:
 --
 +----------------------+---------------------+--------------+---------------------
 | Name | Type | Default | Explanation
 +======================+=====================+==============+=====================
 | width_em | float | 15.0 | Initial width of the
 | | | | (in em unit). Can be
 | | | | True
 +----------------------+---------------------+--------------+---------------------
 | size_multiline_em | tuple[float, float] | (60.0, 15.0) | Initial size of the
 | | | | em unit)
 +----------------------+---------------------+--------------+---------------------
 | hint | str | | Hint text for the in
 +----------------------+---------------------+--------------+---------------------
 | allow_multiline_edit | bool | False | Whether the user can
 | | | | multiline string (wh
 +----------------------+---------------------+--------------+---------------------
 | resizable | bool | True | Whether the single l
 +----------------------+---------------------+--------------+---------------------
 | wrap_multiline | bool | False | Whether the text is
 | | | | a multiline string
 +----------------------+---------------------+--------------+---------------------
 | wrap_multiline_width | int | 80 | Width at which the t
 | | | | presented as a multi
 +----------------------+---------------------+--------------+---------------------

 Available custom attributes for AnyDataWithGui Generic attributes:
 --
 +----------------+--------+---------------------+---------------------------------
 | Name | Type | Default | Explanation
 +================+========+=====================+=================================
 | | | | **Generic attributes**
 +----------------+--------+---------------------+---------------------------------
 | validate_value | object | None | Function to validate a paramete
 | | | | return DataValidationResult.ok()
 +----------------+--------+---------------------+---------------------------------
 | label | str | | A label for the parameter. If em
 | | | | function parameter name is used
 +----------------+--------+---------------------+---------------------------------
 | tooltip | str | | An optional tooltip to be displa
 +----------------+--------+---------------------+---------------------------------
 | label_color | ImVec4 | ImVec4(0.000000, | The color of the label (will use
 | | | 0.000000, 0.000000, | text color if not provided)
 | | | 1.000000) |
 +----------------+--------+---------------------+---------------------------------

Code to test this GUI type:

```python



Example: Print the GUI info for ImageWithGui

import typing
import fiatlight

@fiatlight.with_fiat_attributes(
    str_param__width_em = 15.0,
    str_param__size_multiline_em = (60.0, 15.0),
    str_param__hint = "",
    str_param__allow_multiline_edit = False,
    str_param__resizable = True,
    str_param__wrap_multiline = False,
    str_param__wrap_multiline_width = 80,
    #  Generic attributes
    str_param__validate_value = None,
    str_param__label = "",
    str_param__tooltip = "",
    str_param__label_color = ImVec4(0.000000, 0.000000, 0.000000, 1.000000))
def f(str_param: str) -> str:
    return str_param

fiatlight.run(f)
```

%%bash
fiatlight gui ImageWithGui

GUI type: ImageWithGui
=======================
 A highly sophisticated GUI for displaying and analysing images. Zoom/Pan, show cha

 Available custom attributes for fiat_image.ImageWithGui:
 --
 +---------------------------------+-----------------+-----------+-----------------
 | Name | Type | Default | Explanation
 +=================================+=================+===========+=================
 | | | | **Main attribute
 +---------------------------------+-----------------+-----------+-----------------
 | only_display | bool | False | Only display the
 | | | | zoom, no pan
 +---------------------------------+-----------------+-----------+-----------------
 | image_display_size | tuple[int, int] | (200, 0) | Initial size of
 | | | | height). One of
 +---------------------------------+-----------------+-----------+-----------------
 | zoom_key | str | z | Key to zoom in t
 | | | | same zoom key wi
 +---------------------------------+-----------------+-----------+-----------------
 | is_color_order_bgr | bool | True | Color order is B
 | | | | uses BGR by defa
 +---------------------------------+-----------------+-----------+-----------------
 | can_resize | bool | True | Can resize the i
 | | | | the bottom right
 +---------------------------------+-----------------+-----------+-----------------
 | | | | **Channels**
 +---------------------------------+-----------------+-----------+-----------------
 | show_channels | bool | False | Show channels
 +---------------------------------+-----------------+-----------+-----------------
 | channel_layout_vertically | bool | False | Layout channels
 +---------------------------------+-----------------+-----------+-----------------
 | | | | **Zoom & Pan**
 +---------------------------------+-----------------+-----------+-----------------
 | pan_with_mouse | bool | True | Pan with mouse
 +---------------------------------+-----------------+-----------+-----------------
 | zoom_with_mouse_wheel | bool | True | Zoom with mouse
 +---------------------------------+-----------------+-----------+-----------------
 | | | | **Info displayed
 +---------------------------------+-----------------+-----------+-----------------
 | show_school_paper_background | bool | True | Show school pape
 | | | | is unzoomed
 +---------------------------------+-----------------+-----------+-----------------
 | show_alpha_channel_checkerboard | bool | True | Show alpha chann
 +---------------------------------+-----------------+-----------+-----------------
 | show_grid | bool | True | Show grid with t
 +---------------------------------+-----------------+-----------+-----------------
 | draw_values_on_zoomed_pixels | bool | True | Draw values on p
 +---------------------------------+-----------------+-----------+-----------------
 | | | | **Info displayed
 +---------------------------------+-----------------+-----------+-----------------
 | show_image_info | bool | True | Show image info,
 +---------------------------------+-----------------+-----------+-----------------

 | show_pixel_info | bool | True | Show pixel info,
 | | | | position under t
 +---------------------------------+-----------------+-----------+-----------------
 | | | | **Control button
 +---------------------------------+-----------------+-----------+-----------------
 | show_zoom_buttons | bool | True | Show zoom button
 +---------------------------------+-----------------+-----------+-----------------
 | show_options_panel | bool | True | Show options pan
 +---------------------------------+-----------------+-----------+-----------------
 | show_options_button | bool | True | Show options but
 +---------------------------------+-----------------+-----------+-----------------
 | show_inspect_button | bool | True | Show the inspect
 | | | | a large version
 | | | | Inspector
 +---------------------------------+-----------------+-----------+-----------------

 Available custom attributes for AnyDataWithGui Generic attributes:
 --
 +----------------+--------+---------------------+---------------------------------
 | Name | Type | Default | Explanation
 +================+========+=====================+=================================
 | | | | **Generic attributes**
 +----------------+--------+---------------------+---------------------------------
 | validate_value | object | None | Function to validate a paramete
 | | | | return DataValidationResult.ok()
 +----------------+--------+---------------------+---------------------------------
 | label | str | | A label for the parameter. If em
 | | | | function parameter name is used
 +----------------+--------+---------------------+---------------------------------
 | tooltip | str | | An optional tooltip to be displa
 +----------------+--------+---------------------+---------------------------------
 | label_color | ImVec4 | ImVec4(0.000000, | The color of the label (will use
 | | | 0.000000, 0.000000, | text color if not provided)
 | | | 1.000000) |
 +----------------+--------+---------------------+---------------------------------

Code to test this GUI type:

```python
import typing
import fiatlight

@fiatlight.with_fiat_attributes(
    #  Main attributes for the image viewer
    union_param__only_display = False,
    union_param__image_display_size = (200, 0),
    union_param__zoom_key = "z",
    union_param__is_color_order_bgr = True,
    union_param__can_resize = True,
    #  Channels
    union_param__show_channels = False,
    union_param__channel_layout_vertically = False,
    #  Zoom & Pan
    union_param__pan_with_mouse = True,



Annex: list of registered types

By running the fiatlight types  command, you can list all the registered types in Fiatlight. Here

is a list of the available types:

    union_param__zoom_with_mouse_wheel = True,
    #  Info displayed on image
    union_param__show_school_paper_background = True,
    union_param__show_alpha_channel_checkerboard = True,
    union_param__show_grid = True,
    union_param__draw_values_on_zoomed_pixels = True,
    #  Info displayed under the image
    union_param__show_image_info = True,
    union_param__show_pixel_info = True,
    #  Control buttons under the image
    union_param__show_zoom_buttons = True,
    union_param__show_options_panel = True,
    union_param__show_options_button = True,
    union_param__show_inspect_button = True,
    #  Generic attributes
    union_param__validate_value = None,
    union_param__label = "",
    union_param__tooltip = "",
    union_param__label_color = ImVec4(0.000000, 0.000000, 0.000000, 1.000000))
def f(union_param: typing.Union[fiatlight.fiat_kits.fiat_image.image_types.ImageU8_1
    return union_param

fiatlight.run(f)
```

%%bash
fiatlight types

+--+------------------------------
| Data Type | Gui Type
+==+==============================
| fiatlight.fiat_types.fiat_number_types.Float_0_1 | fiatlight.fiat_togui.primitiv
| synonym for float in [0, 1] (NewType) | A highly customizable float
+--+------------------------------
| fiatlight.fiat_types.fiat_number_types.Float__1_1 | fiatlight.fiat_togui.primitiv
| synonym for float in [-1, 1] (NewType) | A highly customizable float
+--+------------------------------
| fiatlight.fiat_types.fiat_number_types.Int_0_255 | fiatlight.fiat_togui.primitiv
| synonym for int in [0, 255] (NewType) | A highly customizable int w
+--+------------------------------
| int | fiatlight.fiat_togui.primitiv
| | A highly customizable int w
+--+------------------------------
| float | fiatlight.fiat_togui.primitiv
| | A highly customizable float
+--+------------------------------
| str | fiatlight.fiat_togui.str_with
| | A Gui for a string with res
| | multiline editing.
+--+------------------------------
| bool | fiatlight.fiat_togui.primitiv
| | A bool widget. Can use a ch
+--+------------------------------
| fiatlight.fiat_types.color_types.ColorRgb | fiatlight.fiat_togui.primitiv
| synonym for tuple[int, int, int] describing an | A nice color picker for RGB
| RGB color, with values in [0, 255] (NewType) |
+--+------------------------------
| fiatlight.fiat_types.color_types.ColorRgba | fiatlight.fiat_togui.primitiv
| synonym for tuple[int, int, int, int] describing | A nice color picker for RGB
| an RGBA color, with values in [0, 255] (NewType) |
+--+------------------------------
| fiatlight.fiat_types.color_types.ColorRgbFloat | fiatlight.fiat_togui.primitiv
| synonym for tuple[float, float, float] | A nice color picker for RGB
| describing an RGB color, with values in [0, 1] |
| (NewType) |
+--+------------------------------
| fiatlight.fiat_types.color_types.ColorRgbaFloat | fiatlight.fiat_togui.primitiv
| synonym for tuple[float, float, float, float] | A nice color picker for RGB
| describing an RGBA color, with values in [0, 1] |
| (NewType) |
+--+------------------------------
| fiatlight.fiat_types.fiat_number_types.PositiveFlo | fiatlight.fiat_togui.primitiv
| at | A highly customizable float
| synonym for float > 0 (strictly greater than 0) |
| (NewType) |
+--+------------------------------
| (dataclass) fiatlight.fiat_togui.dataclass_example | fiatlight.fiat_togui.dataclas
| s.ExampleDataclass | A sophisticated GUI for a d
| ExampleDataclass(x: int = 0, y: str = 'Hello') |
+--+------------------------------
| (BaseModel) fiatlight.fiat_togui.dataclass_example | fiatlight.fiat_togui.basemode

| s.ExampleBaseModel | A sophisticated GUI for a p
+--+------------------------------
| fiatlight.fiat_types.file_types.FilePath | fiatlight.fiat_togui.file_typ
| synonym for str, describing a file path | A Gui that enable to select
| (NewType) |
+--+------------------------------
| fiatlight.fiat_types.file_types.TextPath | fiatlight.fiat_togui.file_typ
| synonym for str, describing a text file path | A Gui that enable to select
| (NewType) |
+--+------------------------------
| fiatlight.fiat_types.file_types.ImagePath | fiatlight.fiat_togui.file_typ
| synonym for str, describing an image file path | A Gui that enable to select
| (NewType) |
+--+------------------------------
| fiatlight.fiat_types.file_types.AudioPath | fiatlight.fiat_togui.file_typ
| synonym for str, describing an audio file path | A Gui that enable to select
| (NewType) |
+--+------------------------------
| fiatlight.fiat_types.file_types.VideoPath | fiatlight.fiat_togui.file_typ
| synonym for str, describing a video file path | A Gui that enable to select
| (NewType) |
+--+------------------------------
| fiatlight.fiat_types.file_types.FilePath_Save | fiatlight.fiat_togui.file_typ
| synonym for str, describing a file path for | A Gui that enable to select
| saving (NewType) | dialog.
+--+------------------------------
| fiatlight.fiat_types.file_types.TextPath_Save | fiatlight.fiat_togui.file_typ
| synonym for str, describing a text file path for | A Gui that enable to select
| saving (NewType) | file dialog.
+--+------------------------------
| fiatlight.fiat_types.file_types.ImagePath_Save | fiatlight.fiat_togui.file_typ
| synonym for str, describing an image file path | A Gui that enable to select
| for saving (NewType) | file dialog.
+--+------------------------------
| fiatlight.fiat_types.file_types.AudioPath_Save | fiatlight.fiat_togui.file_typ
| synonym for str, describing an audio file path | A Gui that enable to select
| for saving (NewType) | file dialog.
+--+------------------------------
| fiatlight.fiat_types.file_types.VideoPath_Save | fiatlight.fiat_togui.file_typ
| synonym for str, describing a video file path | A Gui that enable to select
| for saving (NewType) | file dialog.
+--+------------------------------
| (BaseModel) fiatlight.fiat_kits.fiat_image.cv_colo | fiatlight.fiat_togui.basemode
| r_type.ColorConversion | A sophisticated GUI for a p
| A color conversion from one color space to |
| another (color spaces use the ColorType enum). |
+--+------------------------------
| (BaseModel) fiatlight.fiat_kits.fiat_image.lut_typ | fiatlight.fiat_togui.basemode
| es.ColorLutParams | A sophisticated GUI for a p
+--+------------------------------
| (BaseModel) fiatlight.fiat_kits.fiat_image.camera_ | fiatlight.fiat_togui.basemode
| image_provider.CameraParams | A sophisticated GUI for a p
| Parameters for the camera image provider |
+--+------------------------------

Fiat Tuning: Tune functions

Introduction

Fiatlight provides you with powerful tools to visually debug the intermediate states of your function.

By adding a fiat_tuning attribute to a function, you can provide additional information that will be

displayed in the GUI node for this function. This attribute is a dictionary and can contain named

| None | fiatlight.fiat_kits.fiat_imag
| All types whose name starts with | A highly sophisticated GUI
| fiatlight.fiat_kits.fiat_image.image_types.Image | Zoom/Pan, show channels, show
| | etc.
+--+------------------------------
| None | fiatlight.fiat_kits.fiat_imag
| Union of types whose name starts with | A highly sophisticated GUI
| fiatlight.fiat_kits.fiat_image.image_types.Image | Zoom/Pan, show channels, show
| | etc.
+--+------------------------------
| (BaseModel) | fiatlight.fiat_kits.fiat_imag
| fiatlight.fiat_kits.fiat_image.lut_types.LutParams | A GUI for LutParams, allowi
| Simple parameters to create a LUT (Look-Up | Look-Up Table transformation
| Table) transformation to an image |
+--+------------------------------
| fiatlight.fiat_kits.fiat_implot.array_types.FloatM | fiatlight.fiat_kits.fiat_impl
| atrix_Dim1 | A GUI for presenting 1D or
| synonym for a 1D ndarray of floats (NewType) | array as a line, scatter (+ s
| | small enough)
+--+------------------------------
| fiatlight.fiat_kits.fiat_implot.array_types.FloatM | fiatlight.fiat_kits.fiat_impl
| atrix_Dim2 | A GUI for presenting 1D or
| synonym for a 2D ndarray of floats (NewType) | array as a line, scatter (+ s
| | small enough)
+--+------------------------------
| fiatlight.fiat_kits.fiat_ai.prompt.Prompt | fiatlight.fiat_kits.fiat_ai.p
| synonym for a string used as a prompt, used for | A Gui to edit a prompt, wit
| AI text and image generation models (NewType) | in a popup.
+--+------------------------------
| pandas.core.frame.DataFrame | fiatlight.fiat_kits.fiat_data
| | A class to present a pandas
| | and other features. Open in a
+--+------------------------------
| matplotlib.figure.Figure | fiatlight.fiat_kits.fiat_matp
| The top level container for all the plot | A Gui that can present a re
| elements. |
+--+------------------------------

data values or descendants of AnyDataWithGui. This information can be used to fine-tune the

function, debug it, or visualize intermediate states.

Moreover, this information can be updated in the GUI, even if the function is a long-running process

called asynchronously.

Example: Measure Execution Time

In the example below, we will add a simple float into the fiat_tuning attribute of the sort_list

function. This float will represent the duration of the sort operation.

The collapsible region “Fiat Tuning” will display this duration:we can see that in this example, it

takes about 0.75 seconds to sort a list of 10,000,000 elements.

Example: The image below shows a sort competition between different algorithms. The GUI

nodes display in real time the evolving state of each algorithm, using “fiat_tuning”.

See “Advanced Video Tutorial: Sort Algorithm Visualizer” below for more details.

https://share.descript.com/view/oBub1WN28bX
https://share.descript.com/view/oBub1WN28bX

Example: Tune using an Image

The fiat_tuning attribute can also be used to display widgets (which must be descendants of

AnyDataWithGui) in the GUI node.

In the example below, we will add an image widget (ImageWithGui) into the fiat_tuning attribute.

import fiatlight as fl
import time

@fl.with_fiat_attributes(n__range=(1, 10_000_000))
def make_random_list(n: int) -> list[int]:
 import random
 return [random.randint(0, 100) for _ in range(n)]

def sort_list(l: list[int]) -> list[int]:
 start = time.time()
 r = sorted(l)
 duration = time.time() - start
 fl.add_fiat_attributes(sort_list, fiat_tuning={"duration": duration})
 return r

fl.run([make_random_list, sort_list], app_name="Sort duration")

demos/images/toon_edges.py is a good example of how to use the fiat_tuning attribute.

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/demos/images/toon_edges.py

Here are some commented extracts of the function:

Once these internals are set, you can see the function “Internals” in the GUI:

add_toon_edges is a complex function that adds a toon effect to an image, by adding colored

edges to the image contours. The contour detection is extremely sensitive to the parameters,

and the fiat_tuning attribute is used to display the intermediate states of the function in

the GUI.

from fiatlight.fiat_kits.fiat_image import ImageU8_3, ImageU8_1

def add_toon_edges(
image: ImageU8_3,
... lots of parameters ...
) -> ImageU8_3:
 edges: ImageU8_1 # = ... (compute the edges)
 dilated_edges: ImageU8_1 # = ... (dilate the edges)
 image_with_edges: ImageU8_3 # = ... (superimpose the edges on the image)

 # fiat_tuning: add debug internals to ease fine-tuning the function inside the
 from fiatlight.fiat_kits.fiat_image import ImageWithGui

 # Add to fiat_tuning any variable you want to be able to fine-tune or debug in
 # * Either a raw type (int, float, str, etc.): see durations
 # * Or a descendant of AnyDataWithGui: see "canny", "dilate", "image_with_e
 fl.add_fiat_attributes(add_toon_edges, fiat_tuning={
 "duration_canny": duration_canny,
 "duration_dilate": duration_dilate,
 "duration_blur": duration_blur,
 "duration_merge": duration_merge,
 "canny": ImageWithGui(edges),
 "dilate": ImageWithGui(dilated_edges),
 "image_with_edges": ImageWithGui(image_with_edges),
 })

 # return the image with edges
 return image_with_edges

import fiatlight as fl
from fiatlight.fiat_kits.fiat_image import ImageU8_GRAY, ImageU8_3, image_source
from fiatlight.demos.images.toon_edges import add_toon_edges

fl.run([image_source, add_toon_edges], app_name="Toon edges")

The image above shows the GUI node for the toon_edges function, with the expanded “Fiat

Tuning” section: it displays the execution time of each step, as well as an image

representation of the intermediate edges and dilated edges.

Debugging Functions exceptions

When a function raises an exception, Fiatlight catches and displays it without crashing the

application. Instead, you will see a “Debug this exception” button that you can use to trigger the

exception again.

This feature is invaluable for debugging and making your functions more robust. If you are using a

debugger, you will be taken directly to the point where the exception occurred, with the correct

inputs to reproduce the bug.

Example: a Math Exception

With this setup, if the input value of a causes math.log(cos_a) to produce an error (when cos_a is

negative).

Fiatlight will catch and display the exception, allowing you to debug it easily.

_Note: this feature can be disabled with:

fl.get_fiat_config().run_config.catch_function_exceptions = False

import fiatlight as fl
import math

def my_function(a: float) -> float:
 cos_a = math.cos(a)
 r = math.log(cos_a)
 return r

fl.run(my_function, app_name="Math domain exception")

Functions Graph
FunctionsGraph is one of the core classes of FiatLight: it represents a graph of functions, where

the output of one function can be linked to the input of another function.

Source: see its full code online

API: FunctionsGraph API

Creating a FunctionsGraph

When a FunctionsGraph can be created automatically

In simple cases (one function, or a list of functions that are chained together), you do not need to

create a FunctionsGraph. See the examples below.

Single function:

import fiatlight as fl
def f(x: int) -> int:
 return x + 1
fl.run(f, app_name="Single function")

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_core/functions_graph.py

Chained functions:

When you need to create a FunctionsGraph

For more complex cases, you can create a FunctionsGraph manually. This allows you to precisely

control the links between the functions.

import fiatlight as fl
def f(x: int) -> int:
 return x + 1
def g(x: int) -> int:
 return x * 2
fl.run([f, g], app_name="Chained functions")

import fiatlight as fl

def int_source(x : int) -> int:
 """This function will be the entry point of the graph
 Since its inputs is unlinked, fiatlight will ask the user for a value for x
 """
 return x

def square(x: int) -> int:
 return x * x

def add(x: int, y: int) -> int:
 return x + y

1. Create the graph
#
Notes:
- in this example we add the function `square` *two times*!
Each of them will have a different *unique name*: "square_1" and "square_
- instead of creating a graph from a function composition, we could also cre
and add the functions manually, like show in the comment below:
graph = fl.FunctionsGraph.create_empty()
graph.add_function_composition([int_source, square, square])
#
graph = fl.FunctionsGraph.from_function_composition([int_source, square, square])

2. Manually add a function
graph.add_function(add)

3. And link it
First, link the output of int_source to the "x" input of add
Note: we could also specify the source output index: src_output_idx=0 (but this i
graph.add_link("int_source", "add", dst_input_name="x")

Then, link the output of the second `square` to the "y" input of add
graph.add_link("square_2", "add", dst_input_name="y")

4. Run the graph
fl.run(graph, app_name="Manual graph")

Validate inputs with Fiatlight

Introduction

Validators are functions that check the validity of a parameter value and raise a ValueError (with a

nice error message), or correct the value if it is not valid. They are a powerful tool to ensure that the

user enters valid values for the function parameters.

Example: Validators for function parameters

The code below will produce a GUI where:

The even_int parameter must be an even integer. If it is not, the user will see a warning.

The multiple_of_5 parameter will automatically correct the input to the nearest multiple of 5.

This enhances user experience by providing immediate feedback and corrections, making the

application more robust and user-friendly.

Example: Validators for Dataclass members

The code below will produce the same GUI as the previous example, but this time using a

dataclass.

import fiatlight as fl

def even_int_validator(x: int) -> int:
 """This validator checks that the value is an even integer, and warns the user
 if x % 2 != 0:
 raise ValueError("The value must be an even integer")
 return x

def multiple_of_5_validator(x: int) -> int:
 """This validator will correct the user input to the closest multiple of 5."""
 return int(x / 5) * 5

def my_function(even_int: int = 0, multiple_of_5: int = 0) -> int:
 return even_int + multiple_of_5

fl.add_fiat_attributes(
 my_function,
 even_int__validator=even_int_validator,
 even_int__range=(-10, 10),
 multiple_of_5__validator=multiple_of_5_validator,
 multiple_of_5__range=(-100, 100)
)

fl.run(my_function, app_name="Validators")

Note: instead of using fl.add_fiat_attributes , you can also use the

@fl.with_fiat_attributes decorator on top of the function to register its validators.

import fiatlight as fl
from dataclasses import dataclass # optional, since fiatlight will add the @datacl
 # when using the @fl.dataclass_with_gui_registra

def even_int_validator(x: int) -> int:
 """This validator checks that the value is an even integer, and warns the user
 if x % 2 != 0:
 raise ValueError("The value must be an even integer")
 return x

def multiple_of_5_validator(x: int) -> int:
 """This validator will correct the user input to the closest multiple of 5."""
 return int(x / 5) * 5

Note: the decorator @fl.dataclass_with_gui_registration will also apply
the @dataclass decorator to the class
@fl.dataclass_with_gui_registration(
 even_int__validator=even_int_validator,
 even_int__range=(-10, 10),
 multiple_of_5__validator=multiple_of_5_validator,
 multiple_of_5__range=(-100, 100)
)
class MyData:
 even_int: int = 0
 multiple_of_5: int = 0

def f(v: MyData) -> MyData:
 return v

fl.run(f, app_name="Validators in a Dataclass")

Note: instead of using the decorator @fl.dataclass_with_gui_registration on top of the

dataclass, you can also use the the function fl.register_dataclass` to register the dataclass,

Example: Validators for BaseModel members

The code below will produce the same GUI as the previous example, but this time using a Pydantic

model. In this case we can also use standard Pydantic validators.

and add fiat attributes, such as the validators.

Note: Fiatlight will also interpret the range from the less than (le) and greater than (ge)

constraints in the Pydantic model.

import fiatlight as fl
from pydantic import BaseModel, Field, field_validator

@fl.base_model_with_gui_registration()
class MyData(BaseModel):
 even_int: int = Field(0, ge=-10, le=10)
 multiple_of_5: int = Field(0, ge=-100, le=100)

 @field_validator("even_int")
 def even_int_validator(cls, v):
 if v % 2 != 0:
 raise ValueError("The value must be an even integer")
 return v

 @field_validator("multiple_of_5")
 def multiple_of_5_validator(cls, v):
 return int(v / 5) * 5

def f(v: MyData) -> MyData:
 return v

fl.run(f, app_name="Validators in a Pydantic model")

Dataclasses & Pydantic Models

Dataclasses and Pydantic models can easily be registered with their GUI.

Dataclasses

Example: automatically create a GUI for a “Person” dataclass

To create a GUI for a dataclass, you first need to register the dataclass with its GUI.

For this, you can use fl.register_dataclass(dataclass_type, **fiat_attributes) or the

@fl.dataclass_with_gui_registration(**fiat_attributes) decorator.

In either case, you can specify GUI options for the fields using the fiat_attributes mechanism.

Option 1: using register_dataclass :

Note: instead of using the decorator @fl.base_model_with_gui_registration on top of the

Pydantic model, you can also use the the function fl.register_base_model` to register the

Pydantic model, and add fiat attributes, such as the validators.

Option 2: using the decorator dataclass_with_gui_registration :

(This option is shorter, but more intrusive, as it modifies the original class definition.)

Use the generated GUI in Fiatlight

You can use the dataclass as a function parameter, and fiatlight will generate a GUI for it.

import fiatlight as fl
from dataclasses import dataclass

class Person:
 name: str
 age: int

fl.register_dataclass(Person, age__range=(0, 120))

import fiatlight as fl
from dataclasses import dataclass

@fl.dataclass_with_gui_registration(age__range=(0, 120))
class Person:
 name: str
 age: int

def greet(person: Person) -> str:
 return f"Hello {person.name}, you are {person.age} years old."

Note: this app *will not* remember the values of the dataclass fields between run
fl.run(greet, app_name="Dataclass Person")

Or use the generate GUI in standalone application

Alternatively, you can use the generated GUI in a standalone application. Below we run an

application using hello_imgui. For more info, see Dear ImGui Bundle doc.

Pydantic models

Below is a more complete example of how to use Pydantic models with fiatlight.

Example: automatically create a GUI for nested Pydantic models

Notes:

fiatlight will automatically generate a serialization/deserialization mechanism for Pydantic

models, so that user entries can be saved and reloaded (when used as function parameters).

This is not available for dataclasses.

Pydantic models can be nested: in the example below, you will see 3 levels of nesting, and

fiatlight will generate a nice GUI for those.

You can use fl.register_base_model to register a Pydantic model with its GUI and add fiat

attributes Alternatively, you can use the @fl.base_model_with_gui_registration decorator

(but this is more intrusive, as it modifies the original class definition).

You can specify GUI options for the fields using the fiat_attributes mechanism.

from imgui_bundle import hello_imgui

PERSON = Person(name="John", age=30)

def gui():
 global PERSON
 _changed, PERSON = fl.immediate_edit("Who are you?", PERSON)

hello_imgui.run(gui)

https://pthom.github.io/imgui_bundle/

Pydantic field validators (such as Field(ge=0, le=90, ...)) are supported and will be

reflected in the GUI.

Custom validators can be used, as shown in the example below.

Validation errors will be displayed in the GUI (in yellow)

import fiatlight as fl
from enum import Enum
from pydantic import BaseModel, Field

An Enum which will be associated to a Gui automatically
class TrainingDataType(Enum):
 Test = "test"
 Train = "train"
 Validation = "validation"

GeographicInfo: a pydantic model, with validation on latitude and longitude
which will be reflected in the GUI
class GeographicInfo(BaseModel):
 latitude: float = Field(ge=0, le=90, default=0)
 longitude: float = Field(ge=-180, lt=180, default=0)

We register the GeographicInfo model with its GUI
(the sliders for lon/lat will be limited to the ranges specified in the Fields)
fl.register_base_model(GeographicInfo)

A custom validator, which will be used to validate the short description
def validate_short_description(value: str) -> str:
 if len(value) > 30:
 raise ValueError("Description is too long")
 return value

A second model, which nests the first one (GeographicInfo)
class ImageInfo(BaseModel):
 geo_info: GeographicInfo = GeographicInfo()
 description: str = "Short Description..."
 width: int = 0
 height: int = 0

We register the ImageInfo model with its GUI, and add some fiat attributes
Also, we add a custom Fiatlight validator for the description field
fl.register_base_model(
 ImageInfo,
 width__range=(0, 2000),
 height__range=(0, 2000),
 description__label="Description",
 description__validator=validate_short_description,
 geo_info__label="Geographic Info",
)

A third model, which nests the second one (ImageInfo)
In total, it has 3 levels: TrainingImage -> ImageInfo -> GeographicInfo
In this case, we use the decorator to register the model with its GUI

Use the generated GUI in a standalone application

Or use the generated GUI in Fiatlight

@fl.base_model_with_gui_registration(
 image_path__label="Select Image",
 training_type__label="Training Set",
 info__label="Image Info",
)
class TrainingImage(BaseModel):
 image_path: fl.fiat_types.ImagePath = "" # type: ignore
 training_type: TrainingDataType = TrainingDataType.Test
 info: ImageInfo = ImageInfo(width=0, height=0)

from imgui_bundle import hello_imgui

We create an instance of the Pydantic model
IMAGE = TrainingImage()

def gui():
 global IMAGE
 _changed, IMAGE = fl.immediate_edit("Image Info", IMAGE)

hello_imgui.run(gui)

In the previous screenshot, the GUI generated by fl.base_model_with_gui_registration will

automatically validate the data according to the model’s constraints, and thus display an error

message (because in this case, the description is too long).

Video Tutorial

A short video tutorial is available for this topic.

🔗 Watch Video

def process_image(image: TrainingImage) -> str:
 import os
 basename = os.path.basename(image.image_path)
 return basename

Note: this app *will* remember the values of the Pydantic model fields between ru
fl.run(process_image, app_name="Pydantic Image Model")

https://share.descript.com/view/CxaFQ5T6iq7

Fully customize a Function Gui

Introduction

By subclassing FunctionWithGui , you can fully customize the behavior of the function:

you can add a GUI for the internal state of the function (e.g. displaying a live plot of a sound

signal)

you can add a heartbeat function that will be called at each frame (e.g. get the latest data from

a sensor)

you can save and load the internal GUI presentation options to/from a JSON file (e.g. to save

the layout of a plot)

Example: Camera & Internal State

fiatlight.fiat_kits.fiat_image.CameraImageProviderGui is a good example of a custom

FunctionWithGui class.

You can see it in action below:

import fiatlight as fl
from fiatlight.fiat_kits.fiat_image import CameraImageProviderGui, ImageU8_3
import cv2

def rotate_45(image: ImageU8_3) -> ImageU8_3:
 transform = cv2.getRotationMatrix2D((image.shape[1] / 2, image.shape[0] / 2), 4
 return cv2.warpAffine(image, transform, (image.shape[1], image.shape[0])) # ty

camera_provider_gui = CameraImageProviderGui()
fl.run([camera_provider_gui, rotate_45], app_name="Camera provider with rotation")

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_kits/fiat_image/camera_image_provider.py

Commented extracts of  camera_image_provider.py

Look at the CameraImageProviderGui class that extends FunctionWithGui :

CameraImageProviderGui (a descendant of FunctionWithGui):

Notes:

CameraImageProviderGui der uses a CameraImageProvider class that provides images

from a camera.

CameraParams contains the state of the camera (device number, brightness, contrast,

etc.). This state is serialized. As it is as a Pydantic model, a GUI for it is automatically

created by Fiatlight, and its state is serialized.

file:///Users/pascal/dvp/OpenSource/ImGuiWork/_Bundle/fiatlight/src/python/fiatlight/doc/_build/html/_downloads/8526087f330b97834e4b6f54c3704340/camera_image_provider.py

CameraParams (serialized internal state):

Custom types registration

By calling fiatlight.register_type(DataType, DataTypeWithGui) , it is possible to register a

custom type with its GUI.

For a given type’s GUI, it is possible to customize many aspects. Basically all the callbacks and

options inside AnyDataGuiCallbacks can be customized.

Example 1: a customizable Normal Distribution type

Step 1: Define the Custom Type

from fiatlight.fiat_notebook import look_at_code
%look_at_python_code
fiatlight.fiat_kits.fiat_image.camera_image_provider.CameraImageProviderGui

import fiatlight as fl
from enum import Enum
from pydantic import BaseModel
import cv2

class CameraResolution(Enum):
 HD_1280_720 = [1280, 720]
 FULL_HD_1920_1080 = [1920, 1080]
 VGA_640_480 = [640, 480]

@fl.base_model_with_gui_registration(device_number__range= (0, 5), brightness__rang
class CameraParams(BaseModel):
 device_number: int = 0
 brightness: float = 0.5
 contrast: float = 0.5
 camera_resolution: CameraResolution = CameraResolution.VGA_640_480

class CameraImageProvider:
 '''A class that provides images from a camera'''
 camera_params: CameraParams
 cv_cap: cv2.VideoCapture | None = None
 ...

First, let’s define a new type called NormalDistribution.

Step 2: Create a Class to Handle the Custom Type

Next, we create a class NormalDistributionWithGui that extends AnyDataWithGui and defines the

custom presentation and editing logic for the NormalDistribution type.

It will handle:

A custom GUI for editing the NormalDistribution type

A custom GUI for presenting the NormalDistribution type (using a cached figure, which is

updated when the distribution changes)

Serialization and deserialization of the custom type

A default value provider

class NormalDistribution:
 mean: float = 0.0
 stddev: float = 1.0

 def __init__(self, mean: float = 0.0, stddev: float = 1.0) -> None:
 self.mean = mean
 self.stddev = stddev

import fiatlight as fl
from imgui_bundle import imgui, imgui_fig
import matplotlib.pyplot as plt
from matplotlib.figure import Figure
import numpy as np

class NormalDistributionWithGui(fl.AnyDataWithGui[NormalDistribution]):
 # Cached figure for the distribution plot
 figure: Figure | None = None
 # boolean to indicate if the figure image should be refreshed
 shall_refresh_figure_image: bool = True

 def __init__(self) -> None:
 super().__init__(NormalDistribution)

 # Edit and present callbacks
 self.callbacks.edit = self._edit_gui
 self.callbacks.present = self._present_gui
 self.callbacks.present_str = lambda value: f"Normal Distrib: Mean={value.me

 # Default value provider
 self.callbacks.default_value_provider = lambda: NormalDistribution()

 # Serialization of the custom type
 # (note it would be automatic if we used a Pydantic model)
 self.callbacks.save_to_dict = lambda value: {"mean": value.mean, "stddev":
 self.callbacks.load_from_dict = lambda data: NormalDistribution(mean=data["

 # Callback for handling changes: we need to subscribe to this event
 # in order to update the self.figure when the distribution changes
 self.callbacks.on_change = self._on_change

 def _on_change(self, value: NormalDistribution) -> None:
 # remember to close the previous figure to avoid memory leaks
 if self.figure is not None:
 plt.close(self.figure)

 # Create the figure
 x = np.linspace(value.mean - 4 * value.stddev, value.mean + 4 * value.stdde
 y = (1 / (value.stddev * np.sqrt(2 * np.pi))) * np.exp(-0.5 * ((x - value.m
 figure = plt.figure(figsize=(4, 3))
 plt.plot(x, y)
 plt.title("Normal Distribution")
 plt.xlabel("x")
 plt.ylabel("Density")
 plt.grid(True)

 # Cache the figure
 self.figure = figure

 # Indicate that the figure image should be refreshed
 self.shall_refresh_figure_image = True

Step 3: Register the type

Finally, we register the custom type with its GUI, simply by calling the register_type function.

From now on, the NormalDistribution type will be associated with the NormalDistributionWithGui

GUI: any function that uses NormalDistribution as a parameter or as a return type will automatically

have a GUI for editing and presenting the NormalDistribution type.

Step 4: Use the custom type in a function

In this example, our function simply returns the NormalDistribution instance that was passed to it.

In the screenshot, you can see the “edit” callback in action in the Param edition section, and the

“present” callback in the Output section.

 @staticmethod
 def _edit_gui(value: NormalDistribution) -> tuple[bool, NormalDistribution]:
 # Note: we receive the current value and return a tuple with
 # a boolean indicating if the value was modified
 modified = False
 imgui.text("Edit Normal Distribution:")
 imgui.set_next_item_width(100)
 changed, new_mean = imgui.slider_float("Mean", value.mean, -10.0, 10.0)
 if changed:
 value.mean = new_mean
 modified = True
 imgui.set_next_item_width(100)
 changed, new_stddev = imgui.slider_float("StdDev", value.stddev, 0.1, 10.0)
 if changed:
 value.stddev = new_stddev
 modified = True

 return modified, value

 def _present_gui(self, _value: NormalDistribution) -> None:
 # We do not use the value which was passed as a parameter as we use the cac
 # which was updated in the _on_change callback
 imgui_fig.fig("Normal Distribution", self.figure, refresh_image=self.shall_
 self.shall_refresh = False

fl.register_type(NormalDistribution, NormalDistributionWithGui)

def f(distribution: NormalDistribution) -> NormalDistribution:
 return distribution

fl.run(f, app_name="Normal Distribution")

2024-07-04 23:40:32.252 Python[68193:11625526] ApplePersistenceIgnoreState: Existing

Example 2: a Length type with imperial units

Step 1: Define the custom type for which we want to create a GUI
===
from typing import NewType

Length = NewType("Length", float)

Step 2: Create a class to handle the custom type
==
import fiatlight
from fiatlight import AnyDataWithGui
from fiatlight.fiat_widgets import fontawesome_6_ctx, icons_fontawesome_6
from typing import NewType, Any, Dict
from imgui_bundle import imgui, hello_imgui, imgui_ctx, ImVec4

The specific GUI for our custom type
class LengthWithGui(AnyDataWithGui[Length]):
 use_imperial_units: bool = False

 def __init__(self) -> None:
 super().__init__(Length)
 self.callbacks.edit = self._edit # A custom callback for editing the data
 self.callbacks.present = self._present # A custom callback for presenting
 self.callbacks.present_str = self._present_str # A custom callback for pre
 self.callbacks.default_value_provider = lambda: Length(1.0) # A custom cal
 # custom callback for saving the GUI options (here, we save the imperial un
 self.callbacks.save_gui_options_to_json = self._save_gui_options_to_json
 self.callbacks.load_gui_options_from_json = self._load_gui_options_from_jso

 def _edit(self, value: Length) -> tuple[bool, Length]:
 _, self.use_imperial_units = imgui.checkbox("Imperial", self.use_imperial_u

 format = "%.3g m" if not self.use_imperial_units else "%.3g yd"
 value_unit = value * 1.09361 if self.use_imperial_units else value
 imgui.set_next_item_width(hello_imgui.em_size(10))
 changed, new_value_unit = imgui.slider_float(
 "Value", value_unit, 1e-5, 1e11, format, imgui.SliderFlags_.logarithmic
)
 if changed:
 value = Length(new_value_unit / 1.09361 if self.use_imperial_units else
 return changed, value

 @staticmethod
 def _present_str(value: Length) -> str:
 return f"Length: {value:.2f} m"

 @staticmethod
 def _present(value: Length) -> None:
 with fontawesome_6_ctx():
 yd = int(Length(value * 1.09361))
 inches = int((Length(value * 1.09361 - yd) * 36))
 bananas = int(value / 0.2)
 imgui.text(f"Length: {yd} yd {inches:.0f} in (aka {bananas}")

Example 3: a sound player

The sound wave player also uses a custom type with a GUI.

 imgui.same_line()
 with imgui_ctx.push_style_color(imgui.Col_.text.value, ImVec4(1, 0.5, 0
 imgui.text(icons_fontawesome_6.ICON_FA_CARROT)
 imgui.same_line()
 imgui.text(")")

 def _save_gui_options_to_json(self) -> Dict[str, Any]:
 return {"use_imperial_units": self.use_imperial_units}

 def _load_gui_options_from_json(self, json: Dict[str, Any]) -> None:
 self.use_imperial_units = json.get("use_imperial_units", False)

Step 3: Register the custom type with its GUI
==
from fiatlight import register_type

register_type(Length, LengthWithGui)

Step 4: Use the custom type in a function
===
A function that uses our custom type
def circle_perimeter(radius: Length) -> Length:
 return Length(2 * 3.14159 * radius)

Run the function with the GUI
fiatlight.run(circle_perimeter, app_name="Circle Perimeter in banana units")

2024-07-04 23:40:37.134 Python[68193:11625526] WARNING: Secure coding is not enabled

For more info, see its source code).

How to create a new “fiat kit”

fiat_kit_skeleton

fiatlight.fiat_kits.fiat_skeleton is a starting point for creating new widgets: it is a minimalistic kit that

contains the necessary files to create a new widget.

from fiatlight.fiat_kits.experimental.fiat_audio_simple.demos import demo_sound_wav

sound_wave_player_gui_demo.main()

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_kits/experimental/fiat_audio_simple/sound_wave_player_gui.py
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiatlight/fiat_kits/fiat_kit_skeleton

See files:

mydata.py

mydata_presenter.py

mydata_with_gui.py

fiat_kit_skeleton in action

fiatlight.fiat_kits.fiat_dataframe it was developed starting from the skeleton. It is a good example on

how it can be customized.

See files:

dataframe_presenter.py

dataframe_with_gui.py

Run the demos

Install optional dependencies

fiat_kit_skeleton
├── __init__.py
├── mydata.py # An example data or library that you want to pre
├── mydata_presenter.py # The presenter of the data
| # Also contains a derivate of PossibleCustomAttri
| # where all the custom attributes are defined
|
└── mydata_with_gui.py # MyDataWithGui: the widget that will be displaye
(inherits from AnyDataWithGui, implements all the callbacks
of AnyDataGuiCallbacks, and uses MyDataPresenter for
complex data presentation)

fiat_dataframe
├── dataframe_presenter.py # The presenter of the data (presentatio
| # Also contains a derivate of PossibleCu
|
├── dataframe_with_gui.py # The widget that will be displayed in t
| # (inherits from AnyDataWithGui, impleme
| # of AnyDataGuiCallbacks, and uses DataF
| # complex data presentation)

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiatlight/fiat_kits/fiat_kit_skeleton/mydata.py
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiatlight/fiat_kits/fiat_kit_skeleton/mydata_presenter.py
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiatlight/fiat_kits/fiat_kit_skeleton/mydata_with_gui.py
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiatlight/fiat_kits/fiat_dataframe
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiatlight/fiat_kits/fiat_dataframe/dataframe_presenter.py
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiatlight/fiat_kits/fiat_dataframe/dataframe_with_gui.py

In order to run the demos, you may need to install per domain dependencies:

For AI demos: pip install -r requirements-ai.txt

For audio demos: pip install -r requirements-audio.txt

Standard demos

Several demos are available in the src/python/fiatlight/demos folder:

Notebook demos

You can also run all the demos that are present in the documentation (there are a lot of interesting

demos, together with screenshots)

%%bash
tree -I "__pycache__|fiat_settings|priv_experiments|fonts|__init__.py" ../demos/ |

../demos/
├── ai
│ ├── demo_sdxl_meme.py
│ └── demo_sdxl_toon_edges.py
├── audio
│ ├── demo_audio_processing_link.py
│ ├── microphone_gui_demo_link.py
│ └── sound_wave_player_gui_demo_link.py
├── custom_graph
│ └── demo_custom_graph.py
├── hello_rosetta
│ ├── example_validation.py
│ └── hello_rosetta.py
├── images
│ ├── demo_computer_vision.py
│ ├── demo_oil_paint.py
│ ├── old_school_meme.py
│ ├── opencv_wrappers.py
│ └── toon_edges.py
├── math
│ ├── demo_binomial.py
│ ├── demo_float_functions.py
│ ├── demo_plot_array.py
│ └── demo_plot_manual_present.py
├── plots
│ └── demo_matplotlib.py
└── string
 ├── demo_word_count.py
 └── str_functions.py

install Jupyter: pip install jupyter

Launch Jupyter with the following command: jupyter lab

After Jupyter is launched, a browser page will open: navigate to the “src/python/fiatlight/doc”

folder to find the demos.

API

High level overview video

The video below present a high-level overview of Fiatlight’s architecture and how it automatically

maps functions and data types to UI components.

🔗 Watch Video

Architecture

Fiatlight Architecture: Overview of the Fiatlight architecture, including the class diagrams and

folders structure.

fiat_core

fiat_core is the foundational package of the fiatlight framework. It focuses on wrapping data and

functions with GUI elements to facilitate interaction.

Its most important classes are:

https://share.descript.com/view/xkgrDb7Kzzj
https://share.descript.com/view/xkgrDb7Kzzj
https://share.descript.com/view/xkgrDb7Kzzj

FunctionWithGui : Encapsulates a function, enriching it with a GUI based on inferred input

and output types. It handles function invocation and manages internal states like exceptions

and execution flags.

AnyDataWithGui : Wraps any type of data with a GUI. This class manages the data value and

its associated callbacks, and it provides methods to serialize/deserialize the data to/from

JSON.

AnyDataGuiCallbacks : Stores callback functions for AnyDataWithGui, enhancing interactivity

by allowing custom widgets and presentations.

FunctionsGraph : Represents a graph of functions, where the output of one function can be

linked to the input of another function. It allows the user to create complex workflows by

chaining functions together.

Fiatlight Architecture

Class diagrams

fiat_core

This is the foundational package of the fiatlight framework. It focuses on wrapping data and

functions with GUI elements to facilitate interaction.

Classes

AnyDataWithGui : Wraps any type of data with a GUI. This class manages the data value and

its associated callbacks, and it provides methods to serialize/deserialize the data to/from

JSON.

AnyDataGuiCallbacks : Stores callback functions for AnyDataWithGui, enhancing interactivity

by allowing custom widgets and presentations.

FunctionWithGui : Encapsulates a function, enriching it with a GUI based on inferred input

and output types. It handles function invocation and manages internal states like exceptions

Necessary imports for this doc page
from fiatlight.fiat_notebook import plantuml_magic, display_markdown_from_file

and execution flags.

ParamWithGui and OutputWithGui : These classes link parameters and outputs of functions

to their GUI representations.

FunctionNode : Represents a node in a function graph, containing links to other function

nodes and managing data flow between them.

FunctionNodeLink : Defines a link between outputs of one function node and inputs of

another, facilitating data flow in the function graph.

FunctionsGraph : Represents a graph of interconnected FunctionNode instances, effectively

mapping the entire functional structure.

%plantuml_include class_diagrams/fiat_core.puml

fiat_core

«DataType»
AnyDataWithGui

a class to wrap any data with a GUI

_value: DataType | Unspecified | Error
callbacks: AnyDataGuiCallbacks[DataType]

save_to_json() / load_from_json()

«DataType»

FunctionWithGui

Wraps a function with a GUI

constructor(f)
(will fill _inputs_with_gui and _outputs_with_gui,
attempting to guess the types)
invoke()
...

name: str = ""

Linked function
_f_impl: Callable[..., Any] | None = None

Members linked to the function
_inputs_with_gui: List[ParamWithGui[Any]]
_outputs_with_gui: List[OutputWithGui[Any]]

_last_exception_message: Optional[str] = None
_last_exception_traceback: Optional[str] = None
_dirty: bool = True

Behavioral Flags
invoke_async: bool = False
invoke_manually: bool = False
invoke_always_dirty: bool = False

Optional callbacks
internal_state_gui: BoolFunction | None = None
on_heartbeat: BoolFunction | None = None

«DataType»
ParamWithGui

name: str
data_with_gui: AnyDataWithGui[DataType]
default_value: DataType | Unspecified

«DataType»
OutputWithGui

data_with_gui: AnyDataWithGui[DataType]

FunctionNodeLink

src_function_node: FunctionNode
src_output_idx: int
dst_function_node: FunctionNode
dst_input_name: str

FunctionNode

function_with_gui: FunctionWithGui
output_links: list[FunctionNodeLink]
input_links: list[FunctionNodeLink]

FunctionsGraph

A graph of FunctionNodes

functions_nodes
functions_nodes_links

This is the core of fiatlight.
It is a set of classes that can be used to add a GUI
to any data, function or graph of functions.
It does depend on ImGui, but not on
imgui-node-editor.

many 1 or many

several

many

many

DataType
AnyDataGuiCallbacks

a class that stores callbacks for AnyDataWithGui
(most of them are optional)

edit : BoolFunction (custom widgets for edition)
present_custom: VoidFunction (for presentation)
etc.

fiat_togui

fiat_togui provides functions to register new types (classes, dataclasses, enums) so that they are

associated with a GUI.

Functions

register_type(type_, gui_type) : register a GUI for a given type. gui_type must be a

descendant of AnyDataWithGui

register_enum(enum_type) and the equivalent decorator enum_with_gui_registration :

register an enum

register_dataclass and the equivalent decorator dataclass_with_gui_registration :

register a dataclass base model

register_base_model and the equivalent decorator base_model_with_gui_registration :

register a pydantic base model

Classes

IntWithGui , FloatWithGui , etc.: provides GUI for primitive types (int, str, float, bool)

OptionalWithGui : able to add GUI to Optional[DataType] (if DataType is registered)

%plantuml_include class_diagrams/fiat_togui.puml

fiat_togui

fiat_core

free_functions

register_type(type_, gui_type)
(Stores a GUI for a type: gui_type
can be any descendant of AnyDataWithGui)

Dataclasses
register_dataclass(dataclass_type)
@dataclass_with_gui_registration (decorator)
register_base_model(base_model_type) (Pydantic)
@base_model_with_gui_registration (decorator)

Notes:
factories are stored in a singleton of the class GuiFactories
FunctionWithGui's constructor will call
add_input_outputs_to_function_with_gui()

PrimitiveWithGui

see primitive_gui.py

aka
IntWithGui, FloatWithGui, StrWithGui

CompositeWithGui

see composite_gui.py

aka
OptionalWithGui, ListWithGui, EnumWithGui, etc.

AnyDataWithGuiFunctionWithGui

This package contains a registry of GUI factories,
able to emit GUI widgets for many data type.

Consequently, it can also add
input/output widgets to a function.

uses

uses add_input_outputs_to_function_with_gui

fiat_runner

fiat_runner is the package that contains the “run” functions:

Free function

fiat_run accepts either a standard function, a list of functions, or a graph of functions. It

executes the function(s) and displays the results in a GUI.

fiat_run(fn) # fn is a function or a FunctionWithGui

fiat_run([fn1, fn2, ...]) # list of functions or FunctionWithGui

fiat_run(graph) # A FunctionsGraph

Classes

FiatlightGui : The main runtime class that presents a GUI for interacting with a function

graph. It orchestrates the execution and user interaction.

FiatlightGuiParams : Stores configuration and parameters for the GUI application, such as

visibility toggles and other settings.

fiat_runner

fiat_nodes
FiatlightGuiParams

show_image_inspector: bool
runner_params: hello_imgui.RunnerParams
addons: immapp.AddOnsParams

FiatlightGui

Runs an application
that presents a function graph
for a Fiatlight

functions_graph_gui
params

run()

«free functions»
Functions

fiat_run(function, params)
fiat_run_composition(functions, params)
fiat_run_graph(graph, params)

FunctionsGraphGui

This module is the entry point
for any fiatlight GUI application.

uses

fiat_nodes

fiat_nodes is the package that is able to display a function graph in a node editor (using imgui-

node-editor)

As a final user, you will probably not interact with it.

Classes

FunctionNodeGui : The GUI representation of a FunctionNode

FunctionNodeLinkGui : The GUI representation aspect of a FunctionNodeLink

FunctionsGraphGui : The GUI representation of a FunctionsGraph

%plantuml_include class_diagrams/fiat_runner.puml

https://github.com/thedmd/imgui-node-editor
https://github.com/thedmd/imgui-node-editor

fiat_nodes

fiat_core

FunctionNodeLinkGui

The GUI representation
for a FunctionNodeLink

function_node_link

(specific to imgui-node-editor)
link_id: ed.LinkId
start_id: ed.PinId
end_id: ed.PinId

FunctionNodeGui

The GUI representation
for a FunctionNode

function_node

(specific to imgui-node-editor)
node_id: ed.NodeId
pins_input: Dict[str, ed.PinId]
pins_output: Dict[str, ed.PinId]

FunctionsGraphGui

The GUI representation
for a FunctionsGraph

functions_graph
function_nodes_gui: List[FunctionNodeGui]
functions_links_gui: List[FunctionNodeLinkGui]

FunctionNode FunctionsGraphFunctionNodeLink

The GUI representation, using imgui-node-editor

many many

Full diagram

Below is the full class diagram

%plantuml_include class_diagrams/fiat_nodes.puml

%plantuml_include class_diagrams/all.puml

fiat_core

fiat_togui

fiat_nodes

fiat_runner

to_gui«DataType»
AnyDataWithGui

a class to wrap any data with a GUI

_value: DataType | Unspecified | Error
callbacks: AnyDataGuiCallbacks[DataType]

save_to_json() / load_from_json()

«DataType»
AnyDataGuiCallbacks

a class that stores callbacks for AnyDataWithGui
(most of them are optional)

edit : BoolFunction (custom widgets for edition)
present_custom: VoidFunction (for presentation)
etc.

FunctionWithGui

Wraps a function with a GUI

constructor(f)
(will fill _inputs_with_gui and _outputs_with_gui,
attempting to guess the types)
invoke()
...

name: str = ""

Linked function
_f_impl: Callable[..., Any] | None = None

Members linked to the function
_inputs_with_gui: List[ParamWithGui[Any]]
_outputs_with_gui: List[OutputWithGui[Any]]

_last_exception_message: Optional[str] = None
_last_exception_traceback: Optional[str] = None
_dirty: bool = True

Behavioral Flags
invoke_async: bool = False
invoke_manually: bool = False
invoke_always_dirty: bool = False

Optional callbacks
internal_state_gui: BoolFunction | None = None
on_heartbeat: BoolFunction | None = None

«DataType»
ParamWithGui

name: str
data_with_gui: AnyDataWithGui[DataType]
default_value: DataType | Unspecified

«DataType»
OutputWithGui

data_with_gui: AnyDataWithGui[DataType]

FunctionNodeLink

src_function_node: FunctionNode
src_output_idx: int
dst_function_node: FunctionNode
dst_input_name: str

FunctionNode

function_with_gui: FunctionWithGui
output_links: list[FunctionNodeLink]
input_links: list[FunctionNodeLink]

FunctionsGraph

A graph of FunctionNodes

functions_nodes
functions_nodes_links

free_functions

register_type(type_, gui_type)
(Stores a GUI for a type: gui_type
can be any descendant of AnyDataWithGui)

Dataclasses
register_dataclass(dataclass_type)
@dataclass_with_gui_registration (decorator)
register_base_model(base_model_type) (Pydantic)
@base_model_with_gui_registration (decorator)

Notes:
factories are stored in a singleton of the class GuiFactories
FunctionWithGui's constructor will call
add_input_outputs_to_function_with_gui()

PrimitiveWithGui

see primitive_gui.py

aka
IntWithGui, FloatWithGui, StrWithGui

CompositeWithGui

see composite_gui.py

aka
OptionalWithGui, ListWithGui, EnumWithGui, etc.

FunctionNodeLinkGui

The GUI representation
for a FunctionNodeLink

function_node_link

(specific to imgui-node-editor)
link_id: ed.LinkId
start_id: ed.PinId
end_id: ed.PinId

FunctionNodeGui

The GUI representation
for a FunctionNode

function_node

(specific to imgui-node-editor)
node_id: ed.NodeId
pins_input: Dict[str, ed.PinId]
pins_output: Dict[str, ed.PinId]

FunctionsGraphGui

The GUI representation
for a FunctionsGraph

functions_graph
function_nodes_gui: List[FunctionNodeGui]
functions_links_gui: List[FunctionNodeLinkGui]

FiatlightGuiParams

show_image_inspector: bool
runner_params: hello_imgui.RunnerParams
addons: immapp.AddOnsParams

FiatlightGui

Runs an application
that presents a function graph
for a Fiatlight

functions_graph_gui
params

run()

«free functions»
Functions

fiat_run(function, params)
fiat_run_composition(functions, params)
fiat_run_graph(graph, params)

free_functions

This is the core of fiatlight.
It is a set of classes that can be used to add a GUI
to any data, function or graph of functions.
It does depend on ImGui, but not on
imgui-node-editor.

This package contains a registry of GUI factories,
able to emit GUI widgets for many data type.

Consequently, it can also add
input/output widgets to a function.

The GUI representation, using imgui-node-editor

This module is the entry point
for any fiatlight GUI application.

many 1 or many

several

many

many

uses

uses add_input_outputs_to_function_with_gui

manymany

uses

uses add_input_outputs_to_function_with_gui

Folder structure

Below is the folder structure of the fiatlight framework.

display_markdown_from_file("folder_structure.md")

src/python/fiatlight//
├── __init__.py
├── fiat_core/ # core classes
│ ├── __init__.py # (AnyDataWithGui, FunctionWithGui, et
│ ├── any_data_gui_callbacks.md
│ ├── any_data_gui_callbacks.py
│ ├── any_data_with_gui.md
│ ├── any_data_with_gui.py
│ ├── detailed_type.py
│ ├── function_node.py
│ ├── function_with_gui.py
│ ├── functions_graph.py
│ ├── output_with_gui.py
│ ├── param_with_gui.py
│ ├── possible_fiat_attributes.py
│ └── togui_exception.py
│
├── fiat_runner/ # runner classes
│ ├── __init__.py # (fiat_run)
│ ├── fiat_gui.py
│ ├── fiat_run_notebook.py
│ └── functions_collection.py
│
├── fiat_togui/ # fiat_togui utilities
│ ├── Readme.md -> fiat_togui.md # This is the core of the powerful intr
│ ├── __init__.py # capabilities of Fiatlight
│ ├── composite_gui.py
│ ├── composite_gui_demo.py
│ ├── dataclass_examples.py
│ ├── dataclass_gui.py
│ ├── dataclass_gui_demo.py
│ ├── explained_value_gui.py
│ ├── fiat_togui.md
│ ├── file_types_gui.py
│ ├── file_types_gui_demo.py
│ ├── function_signature.py
│ ├── make_gui_demo_code.py
│ ├── primitive_gui_demo.py
│ ├── primitives_gui.py
│ ├── str_with_gui.py
│ ├── str_with_gui_demo.py
│ ├── to_gui.py
│
├── fiat_config/ # global configuration (style, colors,
│ ├── __init__.py
│ ├── fiat_config_def.py
│ └── fiat_style_def.py
│
├── fiat_types/ # Some basic types used throughout Fia
│ ├── __init__.py
│ ├── base_types.py
│ ├── color_types.py
│ ├── error_types.py

│ ├── fiat_number_types.py
│ ├── file_types.py
│ ├── function_types.py
│ ├── str_types.py
│
├── fiat_kits/ # domain specific kits
│ ├── Readme.md -> fiat_kits.md
│ ├── __init__.py
│ │
│ ├── fiat_image/ # image widgets (ImageWithGui, LutGui,
│ │ ├── Readme.md -> fiat_image.md
│ │ ├── __init__.py
│ │ ├── camera_image_provider.py
│ │ ├── camera_image_provider_demo.py
│ │ ├── cv_color_type.py
│ │ ├── fiat_image.md
│ │ ├── fiat_image_attrs_demo.py
│ │ ├── image_gui.py
│ │ ├── image_to_from_file_gui.py
│ │ ├── image_to_from_file_gui_demo.py
│ │ ├── image_types.py
│ │ ├── lut_functions.py
│ │ ├── lut_gui.py
│ │ ├── lut_gui_demo.py
│ │ ├── lut_types.py
│ │ ├── overlay_alpha_image.py
│ │ └── paris.jpg
│ │
│ ├── fiat_matplotlib/ # Matplotlib widget (FigureWithGui)
│ │ ├── __init__.py
│ │ ├── comparison_dash/
│ │ │ ├── __init__.py
│ │ │ └── figure_demo_dash.py
│ │ ├── comparison_streamlit/
│ │ │ ├── __init__.py
│ │ │ ├── anim_wave_streamlit.py
│ │ │ └── figure_demo_streamlit.py
│ │ ├── fiat_matplotlib.md
│ │ ├── figure_with_gui.py
│ │ └── figure_with_gui_demo.py
│ │
│ ├── fiat_dataframe/ # Pandas DataFrame widget (DataFrameWi
│ │ ├── Readme.md -> fiat_dataframe.md
│ │ ├── __init__.py
│ │ ├── dataframe_presenter.py
│ │ ├── dataframe_with_gui.py
│ │ ├── dataframe_with_gui_demo_titanic.py
│ │ └── fiat_dataframe.md
│ │
│ ├── fiat_implot/ # Plots with ImPlot:
│ │ ├── __init__.py # SimplePlotGui presents 1D/2D arrays with I
│ │ ├── array_types.py
│ │ ├── simple_plot_gui.py
│ │ └── simple_plot_gui_demo.py

│ │
│ ├── fiat_ai/ # Artificial Intelligence kit
│ │ ├── __init__.py # (Prompt + Stable Diffusion)
│ │ ├── invoke_sdxl_turbo.py
│ │ ├── invoke_sdxl_turbo_demo.py
│ │ ├── prompt.py
│ │ ├── prompt_with_gui.py
│ │ └── prompt_with_gui_demo.py
│ │
│ ├── fiat_kit_skeleton/ # Kit skeleton
│ │ ├── Readme.md -> fiat_skeleton.md # (a starting point to create new kits
│ │ ├── __init__.py
│ │ ├── fiat_skeleton.md
│ │ ├── mydata.py
│ │ ├── mydata_presenter.py
│ │ └── mydata_with_gui.py
│ │
│ ├── experimental/
│ │ ├── __init__.py
│ │ └── fiat_audio_simple/ # audio processing kit (experimental)
│ │ ├── __init__.py
│ │ ├── audio_types.py
│ │ ├── audio_types_gui.py
│ │ ├── microphone_gui.py
│ │ ├── microphone_gui_demo.py
│ │ ├── microphone_io.py
│ │ ├── sound_wave_player.py
│ │ ├── sound_wave_player_demo.py
│ │ ├── sound_wave_player_gui.py
│ │ └── sound_wave_player_gui_demo.py
│
├── fiat_nodes/ # Present function inside Nodes
│ ├── __init__.py
│ ├── function_node_gui.py
│ ├── functions_graph_gui.py
│
├── fiat_utils/ # internal utilities
│ ├── __init__.py
│ ├── docstring_utils.py
│ ├── fiat_attributes_decorator.py
│ ├── fiat_math.py
│ ├── functional_utils.py
│ ├── lazy_module.py
│ ├── print_repeatable_message.py
│ ├── registry.py
│ └── str_utils.py
│
├── fiat_widgets/ # internal widgets
│ ├── __init__.py
│ ├── fiat_osd.py
│ ├── float_widgets.py
│ ├── fontawesome6_ctx_utils.py
│ ├── group_panel.py
│ ├── mini_buttons.py

FunctionWithGui

Introduction

FunctionWithGui is one of the core classes of FiatLight: it wraps a function with a GUI that

presents its inputs and outputs.

Manual: Read the manual for a detailed guide on how to use it.

Source code: View its full code online.

Signature

Below, you will find the “signature” of the FunctionWithGui class, with its main attributes and

methods (but not their bodies)

Its full source code is available online.

│ ├── misc_widgets.py
│ ├── node_separator.py
│ └── ribbon_panel.py
│
├── fiat_cli/ # Command Line Interface
│ ├── __init__.py
│ ├── fiatlight_cli.py*
│
├── fiat_doc/ # documentation utilities
│ ├── __init__.py
│ ├── code_utils.py
│ ├── make_class_header.py
├── fiat_notebook/ # notebook utilities
│ ├── look_at_code.py
│ ├── notebook_utils.py
│ └── plantuml_magic.py
├── py.typed

from fiatlight.fiat_notebook import look_at_code
%look_at_class_header fiatlight.fiat_core.FunctionWithGui

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_core/function_with_gui.py
https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_core/function_with_gui.py

class FunctionWithGui:
 """FunctionWithGui: add GUI to a function

 `FunctionWithGui` is one of the core classes of FiatLight: it wraps a function w
 inputs and its output(s).

 Public Members
 ==============
 # the name of the function
 name: str = ""

 #
 # Behavioral Flags
 # ----------------
 # invoke_async: if true, the function shall be called asynchronously
 invoke_async: bool = False

 # invoke_manually: if true, the function will be called only if the user clicks
 # (if inputs were changed, a "Refresh needed" label will be displayed)
 invoke_manually: bool = False

 # invoke_always_dirty: if true, the function output will always be considered ou
 # - if invoke_manually is true, the "Refresh needed" label will be displayed
 # - if invoke_manually is false, the function will be called at each frame
 # Note: a "live" function is thus a function with invoke_manually=False and invo
 invoke_always_dirty: bool = False

 # Optional user documentation to be displayed in the GUI
 # - doc_display: if True, the doc string is displayed in the GUI (default: F
 # - doc_is_markdown: if True, the doc string is in Markdown format (default:
 # - doc_user: the documentation string. If not provided, the function docstr
 # - doc_show_source: if True, the source code of the function will be displa
 doc_display: bool = True
 doc_markdown: bool = True
 doc_user: str = ""
 doc_show_source: bool = False

 #
 # Internal state GUI
 # ------------------
 # internal_state_gui: optional Gui for the internal state of the function
 # (this function may display a GUI to show the internal state of the function,
 # and return True if the state has changed, and the function needs to be called
 internal_state_gui: BoolFunction | None = None

 # internal_state_gui_node_compatible:
 # If True, the internal_state_gui function is incompatible with being presented
 # (this is due to a limitation of the node editor, which cannot render scrollabl
 # Note: instead of setting edit_node_compatible to False, you may query
 # `fiatlight.is_rendering_in_node()` to know if you are rendering in a nod
 # and choose alternative widgets in this case.
 internal_state_gui_node_compatible: bool = True

 #
 # Heartbeat
 # ---------
 # on_heartbeat: optional function that will be called at each frame
 # (and return True if the function needs to be called to update the output)
 on_heartbeat: BoolFunction | None = None

 #
 # Serialization
 # -------------
 # save/load_internal_gui_options_from_json (Optional)
 # Optional serialization and deserialization of the internal state GUI presentat
 # (i.e. anything that deals with how the GUI is presented, not the data itself)
 # If provided, these functions will be used to recreate the GUI presentation opt
 # so that the GUI looks the same when the application is restarted.
 save_internal_gui_options_to_json: Callable[[], JsonDict] | None = None
 load_internal_gui_options_from_json: Callable[[JsonDict], None] | None = None

 """
 function_name: str = ''
 label: str = ''
 invoke_async: bool = False
 invoke_manually: bool = False
 invoke_always_dirty: bool = False
 invoke_is_gui_only: bool = False
 doc_display: bool = True
 doc_markdown: bool = True
 doc_user: str = ''
 doc_show_source: bool = False
 internal_state_gui: BoolFunction | None = None
 internal_state_gui_node_compatible: bool = True
 save_internal_gui_options_to_json: Callable[[], JsonDict] | None = None
 load_internal_gui_options_from_json: Callable[[JsonDict], None] | None = None
 on_heartbeat: BoolFunction | None = None
 _dirty: bool = True
 _f_impl: Callable[..., Any] | None = None
 _inputs_with_gui: List[ParamWithGui[Any]]
 _outputs_with_gui: List[OutputWithGui[Any]]
 _last_exception_message: Optional[str] = None
 _last_exception_traceback: Optional[str] = None
 _accept_none_as_output: bool = False

 class _Construct_Section:
 """
 # --
 # Construction
 # input_with_gui and output_with_gui should be filled soon after constructi
 # --
 """
 pass

 def __init__(self, fn: Callable[..., Any] | None, fn_name: str | None=None, *, s
 """Create a FunctionWithGui object, with the given function as implementatio

 The function signature is automatically parsed, and the inputs and outputs a
 with the correct GUI types.

 :param fn: the function for which we want to create a FunctionWithGui

 Notes:
 This function will capture the locals and globals of the caller to be able t
 Make sure to call this function *from the module where the function and its

 If the function has attributes like invoke_manually or invoke_async, they wi
 - if `invoke_async` is True, the function will be called asynchronously
 - if `invoke_manually` is True, the function will be called only if the

 Advanced parameters:

 :param signature_string: a string representing the signature of the function
 used when the function signature cannot be retrieve
 """
 pass

 class _FiatAttributes_Section:
 """
 # --
 # Fiat Attributes
 # --
 """
 pass

 def handle_fiat_attributes(self, fiat_attributes: dict[str, Any]) -> None:
 """Handle custom attributes for the function"""
 pass

 def set_invoke_live(self) -> None:
 """Set flags to make this a live function (called automatically at each fram
 pass

 def set_invoke_manually(self) -> None:
 """Set flags to make this a function that needs to be called manually"""
 pass

 def set_invoke_manually_io(self) -> None:
 """Set flags to make this a IO function that needs to be called manually
 and that is always considered dirty, because it depends on an external devic
 or state (and likely has no input)"""
 pass

 def is_invoke_manually_io(self) -> bool:
 """Return True if the function is an IO function that needs to be called man
 pass

 def set_invoke_async(self) -> None:
 """Set flags to make this a function that is called asynchronously"""
 pass

 def is_live(self) -> bool:
 """Return True if the function is live"""
 pass

 class _Utilities_Section:
 """
 # --
 # Utilities
 # --
 """
 pass

 def call_for_tests(self, **params: Any) -> Any:
 """Call the function with the given parameters, for testing purposes"""
 pass

 def is_dirty(self) -> bool:
 """Return True if the function needs to be called, because the inputs have c
 pass

 def set_dirty(self) -> None:
 """Set the function as dirty."""
 pass

 def get_last_exception_message(self) -> str | None:
 """Return the last exception message, if any"""
 pass

 def shall_display_refresh_needed_label(self) -> bool:
 """Return True if the "Refresh needed" label should be displayed
 i.e. if the function is dirty and invoke_manually is True"""
 pass

 def __str__(self) -> str:
 pass

 class _Inputs_Section:
 """
 # --
 # Inputs, aka parameters
 # --
 """
 pass

 def nb_inputs(self) -> int:
 """Return the number of inputs of the function"""
 pass

 def all_inputs_names(self) -> List[str]:
 """Return the names of all the inputs of the function"""
 pass

 def input(self, name: str) -> AnyDataWithGui[Any]:

 """Return the input with the given name as a AnyDataWithGui[Any]
 The inner type of the returned value is Any in this case.
 You may have to cast it to the correct type, if you rely on type hints.

 Use input_as() if you want to get the input with the correct type.
 """
 pass

 def input_as(self, name: str, gui_type: Type[GuiType]) -> GuiType:
 """Return the input with the given name as a GuiType

 GuiType can be any descendant of AnyDataWithGui, like
 fiatlight.fiat_core.IntWithGui, fiatlight.fiat_core.FloatWithGui, etc.

 Raises a ValueError if the input is not found, and a TypeError if the input
 """
 pass

 def input_of_idx(self, idx: int) -> ParamWithGui[Any]:
 """Return the input with the given index as a ParamWithGui[Any]"""
 pass

 def input_of_idx_as(self, idx: int, gui_type: Type[GuiType]) -> GuiType:
 """Return the input with the given index as a GuiType"""
 pass

 def inputs_guis(self) -> List[AnyDataWithGui[Any]]:
 pass

 def set_input_gui(self, name: str, gui: AnyDataWithGui[Any]) -> None:
 """Set the GUI for the input with the given name"""
 pass

 def has_param(self, name: str) -> bool:
 """Return True if the function has a parameter with the given name"""
 pass

 def param(self, name: str) -> ParamWithGui[Any]:
 """Return the input with the given name as a ParamWithGui[Any]"""
 pass

 def param_gui(self, name: str) -> AnyDataWithGui[Any]:
 """Return the input with the given name as a AnyDataWithGui[Any]"""
 pass

 def set_param_value(self, name: str, value: Any) -> None:
 """Set the value of the input with the given name
 This is useful to set the value of an input programmatically, for example in
 """
 pass

 def toggle_expand_inputs(self) -> None:
 pass

 def toggle_expand_outputs(self) -> None:
 pass

 class _Outputs_Section:
 """
 # --
 # Outputs
 # --
 """
 pass

 def nb_outputs(self) -> int:
 """Return the number of outputs of the function.
 A function typically has 0 or 1 output, but it can have more if it returns a
 """
 pass

 def output(self, output_idx: int=0) -> AnyDataWithGui[Any]:
 """Return the output with the given index as a AnyDataWithGui[Any]
 The inner type of the returned value is Any in this case.
 You may have to cast it to the correct type, if you rely on type hints.

 Use output_as() if you want to get the output with the correct type.
 """
 pass

 def output_as(self, output_idx: int, gui_type: Type[GuiType]) -> GuiType:
 """Return the output with the given index as a GuiType

 GuiType can be any descendant of AnyDataWithGui, like
 fiatlight.fiat_core.IntWithGui, fiatlight.fiat_core.FloatWithGui, etc.

 Raises a ValueError if the output is not found, and a TypeError if the outpu
 """
 pass

 def outputs_guis(self) -> List[AnyDataWithGui[Any]]:
 pass

 class _Invoke_Section:
 """
 # --
 # Invoke the function
 # This is the heart of fiatlight: it calls the function with the current inp
 # and stores the result in the outputs, stores the exception if any, etc.
 # --
 """
 pass

 @final
 def has_bad_inputs(self) -> bool:
 pass

 @final

 def invoke(self) -> None:
 """Invoke the function with the current inputs, and store the result in the

 Will call the function if:
 - the inputs have changed since the last call
 - the function is dirty
 - none of the inputs is an error or unspecified

 If an exception is raised, the outputs will be set to ErrorValue, and the ex

 If the function returned None and the output is not allowed to be None, a Va
 (this is inferred from the function signature)
 """
 pass

 def invoke_gui(self) -> None:
 pass

 @final
 def _invoke_impl(self) -> None:
 pass

 def on_exit(self) -> None:
 """Called when the application is exiting
 Will call the on_exit callback of all the inputs and outputs
 """
 pass

 def _can_emit_none_output(self) -> bool:
 """Return True if the function can emit None as output
 i.e.
 - either the function has no output
 - or the output can be None (i.e. the signature looks like `def f() -> int |
 if the function has multiple outputs, we consider that it can not emit None
 """
 pass

 class _Serialize_Section:
 """
 # --
 # Save and load to json
 # Here, we only save the options that the user entered manually in the GUI:
 # - the options of the inputs
 # - the options of the outputs
 # --
 """
 pass

 def save_user_inputs_to_json(self) -> JsonDict:
 pass

 def load_user_inputs_from_json(self, json_data: JsonDict) -> None:
 pass

Architecture

Below is a PlantUML diagram showing the architecture of the fiat_core module. See the

architecture page for the full architecture diagrams.

 def save_gui_options_to_json(self) -> JsonDict:
 """Save the GUI options to a JSON file
 (i.e. any presentation options of the inputs and outputs, as well as of the
 """
 pass

 def load_gui_options_from_json(self, json_data: JsonDict) -> None:
 """Load the GUI options from a JSON file"""
 pass

 class _Doc_Section:
 pass

 def get_function_doc(self) -> FunctionWithGuiDoc:
 pass

 def _get_function_userdoc(self) -> str | None:
 """Return the user documentation of the function"""
 pass

 def _get_function_docstring(self) -> str | None:
 """Return the docstring of the function"""
 pass

 def _get_function_source_code(self) -> str | None:
 """Return the source code of the function"""
 pass

from fiatlight.fiat_notebook import plantuml_magic
%plantuml_include class_diagrams/fiat_core.puml

fiat_core

«DataType»
AnyDataWithGui

a class to wrap any data with a GUI

_value: DataType | Unspecified | Error
callbacks: AnyDataGuiCallbacks[DataType]

save_to_json() / load_from_json()

«DataType»

FunctionWithGui

Wraps a function with a GUI

constructor(f)
(will fill _inputs_with_gui and _outputs_with_gui,
attempting to guess the types)
invoke()
...

name: str = ""

Linked function
_f_impl: Callable[..., Any] | None = None

Members linked to the function
_inputs_with_gui: List[ParamWithGui[Any]]
_outputs_with_gui: List[OutputWithGui[Any]]

_last_exception_message: Optional[str] = None
_last_exception_traceback: Optional[str] = None
_dirty: bool = True

Behavioral Flags
invoke_async: bool = False
invoke_manually: bool = False
invoke_always_dirty: bool = False

Optional callbacks
internal_state_gui: BoolFunction | None = None
on_heartbeat: BoolFunction | None = None

«DataType»
ParamWithGui

name: str
data_with_gui: AnyDataWithGui[DataType]
default_value: DataType | Unspecified

«DataType»
OutputWithGui

data_with_gui: AnyDataWithGui[DataType]

FunctionNodeLink

src_function_node: FunctionNode
src_output_idx: int
dst_function_node: FunctionNode
dst_input_name: str

FunctionNode

function_with_gui: FunctionWithGui
output_links: list[FunctionNodeLink]
input_links: list[FunctionNodeLink]

FunctionsGraph

A graph of FunctionNodes

functions_nodes
functions_nodes_links

This is the core of fiatlight.
It is a set of classes that can be used to add a GUI
to any data, function or graph of functions.
It does depend on ImGui, but not on
imgui-node-editor.

many 1 or many

several

many

many

DataType
AnyDataGuiCallbacks

a class that stores callbacks for AnyDataWithGui
(most of them are optional)

edit : BoolFunction (custom widgets for edition)
present_custom: VoidFunction (for presentation)
etc.

AnyDataWithGui

Introduction

AnyDataWithGui associate a GUI to any type, with associated GUI callbacks, allowing for custom

rendering, editing, serialization, and event handling within the Fiatlight framework.

It uses callbacks which are stored inside AnyDataGuiCallback.

Signature

Below, we display the class header, i.e., the class without its methods bodies, to give a quick

overview of its structure.

You can see its full code at AnyDataWithGui.

from fiatlight.fiat_notebook import look_at_code
%look_at_class_header fiatlight.fiat_core.AnyDataWithGui

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_core/any_data_with_gui.py

class AnyDataWithGui(Generic[DataType]):
 """AnyDataWithGui: a GUI associated to a type.

 AnyDataWithGui[DataType]
 ========================

 This class manages data of any type with associated GUI callbacks, allowing for
 serialization, and event handling within the Fiatlight framework.

 Members:

 # The type of the data, e.g. int, str, typing.List[int], typing.Tuple[int, str],
 _type: Type[DataType]

 # The value of the data - can be a DataType, Unspecified, or Error
 # It is accessed through the value property, which triggers the on_change callba
 _value: DataType | Unspecified | Error = UnspecifiedValue

 # Callbacks for the GUI
 # This is the heart of FiatLight: the GUI is defined by the callbacks.
 # Think of them as __dunder__ methods for the GUI.
 callbacks: AnyDataGuiCallbacks[DataType]

 # If True, the value can be None. This is useful when the data is optional.
 # Otherwise, any None value will be considered as an Error.
 # Note: when using Optional[any registered type], this flag is automatically set
 can_be_none: bool = False

 Property:

 # Custom attributes that can be set by the user, to give hints to the GUI.
 # For example, with this function declaration,
 # def f(x: int, y: int) -> int:
 # return x + y
 # f.x__range = (0, 10)
 # fiat_attributes["range"] will be (0, 10) for the parameter x.
 @property
 fiat_attributes -> dict[str, Any]

 """
 _type: Type[DataType] | None
 _value: DataType | Unspecified | Error | Invalid[DataType] = UnspecifiedValue
 callbacks: AnyDataGuiCallbacks[DataType]
 can_be_none: bool = False
 _fiat_attributes: FiatAttributes
 _expanded: bool = False
 _can_set_unspecified_or_default: bool = False
 label: str | None = None
 label_color: ImVec4 | None = None
 tooltip: str | None = None
 status_tooltip: str | None = None

 class CollapseOrExpand(Enum):

 collapse = 'Collapse All'
 expand = 'Expand All'

 class PresentOrEdit(Enum):
 present = 'View'
 edit = 'Edit'

 class _Init_Section:
 """
 # --
 # Initialization
 # --
 """
 pass

 def __init__(self, data_type: Type[DataType] | None) -> None:
 """Initialize the AnyDataWithGui with a type, an unspecified value, and no c
 pass

 class _Value_Section:
 """
 # --
 # Value getter and setter + get_actual_value (which returns a Dat
 # --
 """
 pass

 @property
 def value(self) -> DataType | Unspecified | Error | Invalid[DataType]:
 """The value of the data, accessed through the value property.
 Warning: it might be an instance of `Unspecified` (user did not enter any va
 """
 pass

 @value.setter
 def value(self, new_value: DataType | Unspecified | Error | Invalid[DataType]) -
 """Set the value of the data. This triggers the on_change callback (if set)"
 pass

 def get_actual_value(self) -> DataType:
 """Returns the actual value of the data, or raises an exception if the value
 When we are inside a callback, we can be sure that the value is of the corre
 instead of accessing the value directly and checking for Unspecified or Erro
 """
 pass

 def get_actual_or_invalid_value(self) -> DataType:
 """Returns the actual value of the data, or raises an exception if the value
 pass

 class _CustomAttributes_Section:
 """
 # --
 # Custom Attributes

 # --
 """
 pass

 @staticmethod
 def possible_fiat_attributes() -> PossibleFiatAttributes | None:
 """Return the possible custom attributes for this type, if available.
 Should be overridden in subclasses, when custom attributes are available.

 It is strongly advised to return a class variable, or a global variable
 to avoid creating a new instance each time this method is called.
 """
 pass

 @final
 def possible_fiat_attributes_with_generic(self) -> tuple[PossibleFiatAttributes
 pass

 @property
 def fiat_attributes(self) -> FiatAttributes:
 pass

 def merge_fiat_attributes(self, fiat_attrs: FiatAttributes) -> None:
 """Merge custom attributes with the existing ones"""
 pass

 def _handle_generic_attrs(self) -> None:
 """Handle generic custom attributes"""
 pass

 @staticmethod
 def propagate_label_and_tooltip(a: 'AnyDataWithGui[Any]', b: 'AnyDataWithGui[Any
 """Propagate label and tooltip from one AnyDataWithGui to another
 Meant to be used with CompositeGui
 """
 pass

 class _Gui_Section:
 """
 # --
 # Gui sections
 # (Can also be used outside a function Node)
 # --
 """

 def sub_items_can_collapse(self, _present_or_edit: PresentOrEdit) -> bool:
 """Overwrite this in derived classes if they provide multiple sub-items that
 pass

 def sub_items_collapse_or_expand(self, _collapse_or_expand: CollapseOrExpand) ->
 """Overwrite this in derived classes if they provide multiple sub-items that
 pass

 def sub_items_will_collapse_or_expand(self, _present_or_edit: PresentOrEdit) ->

 """Overwrite this in derived classes if they provide multiple sub-items that
 pass

 def _show_collapse_sub_items_buttons(self, present_or_edit: PresentOrEdit) -> No
 pass

 def can_show_present_popup(self) -> bool:
 pass

 def can_show_edit_popup(self) -> bool:
 pass

 def _show_collapse_button(self) -> None:
 pass

 def _show_copy_to_clipboard_button(self) -> None:
 pass

 def can_collapse_present(self) -> bool:
 pass

 def can_collapse_edit(self) -> bool:
 pass

 def can_edit_on_header_line(self) -> bool:
 pass

 def can_present_on_header_line(self) -> bool:
 pass

 def _can_edit_on_next_lines_if_expanded(self) -> bool:
 pass

 def _can_present_on_next_lines_if_expanded(self) -> bool:
 pass

 def _is_editing_on_next_lines(self) -> bool:
 pass

 def _is_presenting_on_next_lines(self) -> bool:
 pass

 def _popup_window_name(self, params: GuiHeaderLineParams[DataType], present_or_e
 pass

 def _gui_present_header_line(self, params: GuiHeaderLineParams[DataType]) -> Non
 """Present the value as a string in one line, or as a widget if it fits on o
 pass

 def _gui_edit_header_line(self, params: GuiHeaderLineParams[DataType]) -> bool:
 pass

 def _show_set_unspecified_or_default_button(self) -> bool:
 pass

 def _gui_edit_next_lines(self, in_popup: bool) -> bool:
 pass

 def _gui_present_next_lines(self, in_popup: bool) -> None:
 pass

 def gui_present_customizable(self, params: GuiHeaderLineParams[DataType]) -> Non
 """Present the value using either the present callback or the default str co
 May present on one line (if possible) or on multiple lines with an expand bu
 """
 pass

 def gui_present(self) -> None:
 pass

 def gui_edit_customizable(self, params: GuiHeaderLineParams[DataType]) -> bool:
 """Call the edit callback. Returns True if the value has changed
 May edit on one line (if possible) or on multiple lines with an expand butto
 """
 pass

 def gui_edit(self) -> bool:
 pass

 class _Callbacks_Section:
 """
 # --
 # Callbacks sections
 # --
 """

 def set_edit_callback(self, edit_callback: DataEditFunction[DataType]) -> None:
 """Helper function to set the edit callback from a free function"""
 pass

 def set_present_callback(self, present_callback: DataPresentFunction[DataType],
 """Helper function to set the present custom callback from a free function""
 pass

 def add_validate_value_callback(self, cb: Callable[[DataType], None]) -> None:
 pass

 def _Serialization_Section(self) -> None:
 """
 # --
 # Serialization and deserialization
 # --
 """
 pass

 @final
 def call_save_to_dict(self, value: DataType | Unspecified | Error | Invalid[Data
 """Serialize the value to a dictionary

 Will call the save_to_dict callback if set, otherwise will use the default s
 A default serialization is available for primitive types, tuples, and Pydant

 (This is how fiatlight saves the data to a JSON file)

 Do not override these methods in descendant classes!
 """
 pass

 @final
 def call_load_from_dict(self, json_data: JsonDict) -> DataType | Unspecified | E
 """Deserialize the value from a dictionary
 Do not override these methods in descendant classes!
 """
 pass

 @final
 def call_save_gui_options_to_json(self) -> JsonDict:
 pass

 @final
 def call_load_gui_options_from_json(self, json_data: JsonDict) -> None:
 pass

 class _Utilities_Section:
 """
 # --
 # Utilities
 # --
 """

 def can_construct_default_value(self) -> bool:
 pass

 def construct_default_value(self) -> DataType:
 pass

 def datatype_qualified_name(self) -> str:
 pass

 def datatype_basename(self) -> str:
 pass

 def datatype_base_and_qualified_name(self) -> str:
 pass

 def datatype_value_to_str(self, value: DataType) -> str:
 """Convert the value to a string
 Uses either the present_str callback, or the default str conversion
 """
 pass

 def datatype_value_to_clipboard_str(self, value: DataType) -> str:

Architecture

Below is a PlantUML diagram showing the architecture of the fiat_core module. See the

architecture page for the full architecture diagrams.

 """Convert the value to a string for the clipboard
 Uses either the clipboard_copy_str callback, or the default str conversion
 """
 pass

 def docstring_first_line(self) -> str | None:
 """Return the first line of the docstring, if available"""
 pass

from fiatlight.fiat_notebook import plantuml_magic
%plantuml_include class_diagrams/fiat_core.puml

fiat_core

«DataType»
AnyDataWithGui

a class to wrap any data with a GUI

_value: DataType | Unspecified | Error
callbacks: AnyDataGuiCallbacks[DataType]

save_to_json() / load_from_json()

«DataType»

FunctionWithGui

Wraps a function with a GUI

constructor(f)
(will fill _inputs_with_gui and _outputs_with_gui,
attempting to guess the types)
invoke()
...

name: str = ""

Linked function
_f_impl: Callable[..., Any] | None = None

Members linked to the function
_inputs_with_gui: List[ParamWithGui[Any]]
_outputs_with_gui: List[OutputWithGui[Any]]

_last_exception_message: Optional[str] = None
_last_exception_traceback: Optional[str] = None
_dirty: bool = True

Behavioral Flags
invoke_async: bool = False
invoke_manually: bool = False
invoke_always_dirty: bool = False

Optional callbacks
internal_state_gui: BoolFunction | None = None
on_heartbeat: BoolFunction | None = None

«DataType»
ParamWithGui

name: str
data_with_gui: AnyDataWithGui[DataType]
default_value: DataType | Unspecified

«DataType»
OutputWithGui

data_with_gui: AnyDataWithGui[DataType]

FunctionNodeLink

src_function_node: FunctionNode
src_output_idx: int
dst_function_node: FunctionNode
dst_input_name: str

FunctionNode

function_with_gui: FunctionWithGui
output_links: list[FunctionNodeLink]
input_links: list[FunctionNodeLink]

FunctionsGraph

A graph of FunctionNodes

functions_nodes
functions_nodes_links

This is the core of fiatlight.
It is a set of classes that can be used to add a GUI
to any data, function or graph of functions.
It does depend on ImGui, but not on
imgui-node-editor.

many 1 or many

several

many

many

DataType
AnyDataGuiCallbacks

a class that stores callbacks for AnyDataWithGui
(most of them are optional)

edit : BoolFunction (custom widgets for edition)
present_custom: VoidFunction (for presentation)
etc.

AnyDataGuiCallbacks

Introduction

AnyDataGuiCallbacks provides a set of callbacks that define how a particular data type should be

presented, edited, and managed within the Fiatlight GUI framework.

These callbacks are used by AnyDataWithGui.

Source

Below, is the class source, which you can also see online.

from fiatlight.fiat_notebook import look_at_code
%look_at_python_code fiatlight.fiat_core.AnyDataGuiCallbacks

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_core/any_data_gui_callbacks.py

class AnyDataGuiCallbacks(Generic[DataType]):
 """AnyDataGuiCallbacks: Collection of callbacks for a given type

 AnyDataGuiCallbacks
 ===================

 This class provides a set of callbacks that define how a particular data type sh
 presented, edited, and managed within the Fiatlight GUI framework.

 These callbacks are used by [AnyDataWithGui](any_data_with_gui).

 """

 # Presentation
 # --
 # present_str: (Mandatory if str() is not enough, optional otherwise)
 # Provide a function that returns a short string info about the data content
 # This string will be presented as a short description of the data in the GUI
 #
 # If possible, it should be short enough to fit in a single line inside a node (
 # If the result string is too long, or occupies more than one line, it will be t
 # (and the rest of the string will be displayed in a tooltip)
 # For example, on complex types such as images, return something like "128x128x3
 # If not provided, the data will be presented using str()
 present_str: Callable[[DataType], str] | None = None

 # present: (Optional)
 # a function that provides a more complex, custom GUI representation of the data
 # It will be presented when a function param is in "expanded" mode, and can use
 # If not provided, the data will be presented using present_str
 #
 # Note: Some widgets cannot be presented in a Node (e.g., a multiline text input
 # You can query `fiatlight.is_rendering_in_node()` to know if you are rend
 # Also, when inside a Node, you may want to render a smaller version, to s
 # (as opposed to rendering a larger version in a detached window).
 present: Callable[[DataType], None] | None = None

 # present_collapsible:
 # Set this to False if your custom presentation is small and fits in one line
 # (i.e. it does not need to be collapsible)
 # If True, the gui presentation will either:
 # - show present_str + an expand button
 # - show the custom presentation + a collapse button
 present_collapsible: bool = True

 # present_node_compatible: (Optional: set to False if using input_text_multiline
 # If True, the present function is incompatible with being presented in a node (
 # of the node editor, which cannot render scrollable widgets)
 # Note: instead of setting edit_node_compatible to False, you may query
 # `fiatlight.is_rendering_in_node()` to know if you are rendering in a nod
 # and choose alternative widgets in this case.
 present_node_compatible: bool = True

 # --

 # Edition
 # --
 # edit: (Mandatory if edition is required)
 # Provide a function that presents an editable interface for the data, and retur
 # (True, new_value) if changed
 # (False, old_value) if not changed
 # If not provided, the data will be presented as read-only
 # Note: Some widgets cannot be presented in a Node (e.g., a multiline text input
 # You can query `fiatlight.is_rendering_in_node()` to know if you are rend
 edit: Callable[[DataType], tuple[bool, DataType]] | None = None

 # edit_collapsible:
 # Set this to False if your custom edition is small, and does not need to be col
 # If True, the gui edition will either:
 # - show present_str + an expand button
 # - show the custom edition + a collapse button
 edit_collapsible: bool = True

 # edit_node_compatible: (Optional: set to False if using input_text_multiline, c
 # If True, the edit function is incompatible with being presented in a node (thi
 # of the node editor, which cannot render scrollable widgets)
 # Note: instead of setting edit_node_compatible to False, you may query
 # `fiatlight.is_rendering_in_node()` to know if you are rendering in a nod
 # and choose alternative widgets in this case.
 edit_node_compatible: bool = True

 # --

 # Default value
 # --
 # default value provider (Needed only for a type without default constructor)
 # this function will be called to provide a default value if needed
 default_value_provider: Callable[[], DataType] | None = None
 # --

 # Events callbacks
 # --
 # on_change (Optional)
 # if provided, this function will be called when the value changes.
 # Can be used in more advanced cases,
 # for example when `present` has an internal cache that needs to be updated,
 # or other side effects.
 on_change: Callable[[DataType], None] | None = None

 # validate_value (Optional)
 # if provided, these functions will be called when the user tries to set a value
 # They should return a DataValidationResult.ok() if the value is valid,
 # or a DataValidationResult.error() with an error message.
 validate_value: list[Callable[[DataType], DataValidationResult]]

 # on_exit (Optional)
 # if provided, this function will be called when the application is closed.

 # Used in more advanced cases, typically when some resources need to be released
 on_exit: VoidFunction | None = None

 # on_heartbeat: (Optional)
 # If provided, this function will be called at each heartbeat of the function no
 # (before the value is drawn). It should return True if any change has been made
 on_heartbeat: BoolFunction | None = None

 # on_fiat_attributes_changed (Optional)
 # if provided, this function will be called when the custom attributes of the da
 # Used in more advanced cases, when the data presentation depends on custom attr
 on_fiat_attributes_changed: Callable[[FiatAttributes], None] | None = None

 # --

 # Serialization and deserialization
 # --
 # Of the GUI presentation options (not the data itself)
 #
 # save/load_gui_options_from_json (Optional)
 # Optional serialization and deserialization of the GUI presentation options
 # (i.e. anything that deals with how the data is presented in the GUI, *not the
 # If provided, these functions will be used to recreate the GUI presentation opt
 # so that the GUI looks the same when the application is restarted.
 save_gui_options_to_json: Callable[[], JsonDict] | None = None
 load_gui_options_from_json: Callable[[JsonDict], None] | None = None

 # Of the data itself
 #
 # Optional serialization and deserialization functions for DataType
 # If provided, these functions will be used to serialize and deserialize the dat
 # If not provided, "value" will be serialized as a dict of its __dict__ attribut
 # or as a json string (for int, float, str, bool, and None)
 save_to_dict: Callable[[DataType], JsonDict] | None = None
 load_from_dict: Callable[[JsonDict], DataType] | None = None
 # --

 # Clipboard
 # --
 # clipboard_copy_str (Optional)
 # if provided, this function will be called when the value is copied to the clip
 # Used in more advanced cases, when the data is not a simple string, or when pre
 clipboard_copy_str: Callable[[DataType], str] | None = None

 # clipboard_copy_possible (Optional)
 # True by default
 # If False, the user can not copy the data to the clipboard
 clipboard_copy_possible: bool = True
 # --

 def __init__(self) -> None:
 self.validate_value = []

Architecture

Below is a PlantUML diagram showing the architecture of the fiat_core module. See the

architecture page for the full architecture diagrams.

from fiatlight.fiat_notebook import plantuml_magic
%plantuml_include class_diagrams/fiat_core.puml

fiat_core

«DataType»
AnyDataWithGui

a class to wrap any data with a GUI

_value: DataType | Unspecified | Error
callbacks: AnyDataGuiCallbacks[DataType]

save_to_json() / load_from_json()

«DataType»

FunctionWithGui

Wraps a function with a GUI

constructor(f)
(will fill _inputs_with_gui and _outputs_with_gui,
attempting to guess the types)
invoke()
...

name: str = ""

Linked function
_f_impl: Callable[..., Any] | None = None

Members linked to the function
_inputs_with_gui: List[ParamWithGui[Any]]
_outputs_with_gui: List[OutputWithGui[Any]]

_last_exception_message: Optional[str] = None
_last_exception_traceback: Optional[str] = None
_dirty: bool = True

Behavioral Flags
invoke_async: bool = False
invoke_manually: bool = False
invoke_always_dirty: bool = False

Optional callbacks
internal_state_gui: BoolFunction | None = None
on_heartbeat: BoolFunction | None = None

«DataType»
ParamWithGui

name: str
data_with_gui: AnyDataWithGui[DataType]
default_value: DataType | Unspecified

«DataType»
OutputWithGui

data_with_gui: AnyDataWithGui[DataType]

FunctionNodeLink

src_function_node: FunctionNode
src_output_idx: int
dst_function_node: FunctionNode
dst_input_name: str

FunctionNode

function_with_gui: FunctionWithGui
output_links: list[FunctionNodeLink]
input_links: list[FunctionNodeLink]

FunctionsGraph

A graph of FunctionNodes

functions_nodes
functions_nodes_links

This is the core of fiatlight.
It is a set of classes that can be used to add a GUI
to any data, function or graph of functions.
It does depend on ImGui, but not on
imgui-node-editor.

many 1 or many

several

many

many

DataType
AnyDataGuiCallbacks

a class that stores callbacks for AnyDataWithGui
(most of them are optional)

edit : BoolFunction (custom widgets for edition)
present_custom: VoidFunction (for presentation)
etc.

FunctionsGraph
FunctionsGraph is one of the core classes of FiatLight: it represents a graph of functions, where

the output of one function can be linked to the input of another function.

Source: see its full code online

Manual: FunctionsGraph API

Signature

Below, you will find the “signature” of the FunctionsGraph class, with its main attributes and

methods (but not their bodies)

Its full source code is  available online.

from fiatlight.fiat_notebook import look_at_code
%look_at_class_header fiatlight.fiat_core.FunctionsGraph

https://github.com/pthom/fiatlight/tree/refact_io/src/python/fiatlight/fiat_core/functions_graph.py
file:///Users/pascal/dvp/OpenSource/ImGuiWork/_Bundle/fiatlight/src/python/fiatlight/doc/_build/html/_downloads/c0332d466fe772951b8cd878a27c3170/functions_graph.py

class FunctionsGraph:
 """A graph of FunctionNodes

 `FunctionsGraph` is one of the core classes of FiatLight: it represents a graph
 where the output of one function can be linked to the input of another function

 See its [full code](../fiat_core/functions_graph.py).

 It contains a graph of FunctionNodes modeled as a list of FunctionNode and a lis
 (which are the links between the outputs of a FunctionNode and the inputs of ano

 This class only stores the data representation of the graph, and does not deal w
 (for this, see FunctionGraphGui)

 This class is not meant to be instantiated directly. Use the factory methods ins

 Public Members
 ==============
 # the list of FunctionNode in the graph
 functions_nodes: list[FunctionNode]
 # the list of links between the FunctionNode
 functions_nodes_links: list[FunctionNodeLink]

 """
 functions_nodes: list[FunctionNode]
 functions_nodes_links: list[FunctionNodeLink]
 _secret_key: str = 'FunctionsGraph'

 class _Construction_Section:
 """
 # ==
 # Construction (Empty)
 # ==
 """
 pass

 def __init__(self, secret_key: str='FunctionsGraph') -> None:
 """This class should not be instantiated directly. Use the factory methods i
 pass

 @staticmethod
 def create_empty() -> 'FunctionsGraph':
 """Create an empty FunctionsGraph"""
 pass

 class _Public_API_Add_Function_Section:
 """
 # ==
 # Public API / Add functions
 #
 # --
 # Notes:
 # You can add either Functions or FunctionWithGui

 # - If f is a FunctionWithGui, it will be added as is
 # - If f is a standard function:
 # - it will be wrapped in a FunctionWithGui
 # - the function signature *must* mention the types of the parameter
 # ==
 """
 pass

 @staticmethod
 def from_function(f: Function | FunctionWithGui) -> 'FunctionsGraph':
 """Create a FunctionsGraph from a single function, either a standard functio
 pass

 @staticmethod
 def from_function_composition(functions: Sequence[Function | FunctionWithGui]) -
 """Create a FunctionsGraph from a list of functions that will be chained tog
 i.e. the output[0] of one function will be the input[0] of the next function
 """
 pass

 def add_function_composition(self, functions: Sequence[Function | FunctionWithGu
 """Add a list of functions that will be chained together"""
 pass

 def add_function(self, f: Function | FunctionWithGui) -> FunctionNode:
 """Add a function to the graph. It will not be linked to any other function.
 pass

 def add_gui_node(self, gui_function: GuiFunctionWithInputs, label: str | None=No
 pass

 def add_task_node(self, task_function: GuiFunctionWithInputs, label: str | None=
 pass

 def add_markdown_node(self, md_string: str, label: str='Documentation', text_wid
 pass

 class _Private_API_Add_Function_Section:
 """
 # ==
 # Private API / Add functions
 # ==
 """
 pass

 def _add_function_with_gui(self, f_gui: FunctionWithGui) -> FunctionNode:
 pass

 def _add_function(self, f: Function) -> FunctionNode:
 pass

 @staticmethod
 def _create_from_function_composition(functions: Sequence[Function | FunctionWit
 """Create a FunctionsGraph from a list of PureFunctions([InputType] -> Outpu

 * They should all be pure functions
 * The output[0] of one should be the input[0] of the next
 """
 pass

 class _Graph_Manipulation_Section:
 """
 # ==
 # Graph manipulation
 # ==
 """
 pass

 def _can_add_link(self, src_function_node: FunctionNode, dst_function_node: Func
 """Check if a link can be added between two functions. (private)"""
 pass

 def _add_link_from_function_nodes(self, src_function_node: FunctionNode, dst_fun
 """Add a link between two functions nodes (private)"""
 pass

 def add_link(self, src_function: str | Function | FunctionWithGui, dst_function:
 """Add a link between two functions, which are identified by their *unique*

 If a graph reuses several times the same function "f",
 the unique names for this functions will be "f_1", "f_2", "f_3", etc.
 """
 pass

 def merge_graph(self, other: 'FunctionsGraph') -> None:
 """Merge another FunctionsGraph into this one"""
 pass

 def function_with_gui_of_name(self, name: str | None=None) -> FunctionWithGui:
 """Get the function with the given unique name"""
 pass

 def _would_add_cycle(self, new_link: FunctionNodeLink) -> bool:
 """Check if adding a link would create a cycle (private)"""
 pass

 def has_cycle(self) -> bool:
 """Returns True if the graph has a cycle"""
 pass

 def _has_cycle_from_node(self, fn: FunctionNode, path: Set[FunctionNode] | None=
 """Check if there is a cycle starting from a given node (private)"""
 pass

 def _remove_link(self, link: FunctionNodeLink) -> None:
 """Remove a link between two functions (private)"""
 pass

 def _remove_function_node(self, function_node: FunctionNode) -> None:

 """Remove a function node from the graph (private)"""
 pass

 class _Utilities_Section:
 """
 # ==
 # Utilities
 # ==
 """
 pass

 def function_node_unique_name(self, function_node: FunctionNode) -> str:
 """Return the unique name of a function node:
 If a graph reuses several times the same function "f",
 the unique names for this functions will be "f_1", "f_2", "f_3", etc.
 """
 pass

 def _function_node_with_name_or_is_function(self, name_or_function: str | Functi
 """Get the function node with the given name or function"""
 pass

 def _function_node_with_unique_name(self, function_name: str) -> FunctionNode:
 """Get the function with the unique name"""
 pass

 def all_function_nodes_with_unique_names(self) -> Dict[str, FunctionNode]:
 """Return a dict of all the function nodes, with their unique names as keys
 pass

 def shall_display_refresh_needed_label(self) -> bool:
 """Returns True if any function node shall display a "Refresh needed" label"
 pass

 class _Serialization_Section:
 """
 # ==
 # Serialization
 # Note: save_gui_options_to_json() and load_gui_options_from_json()
 # are intentionally not implemented here
 # See FunctionsGraphGui (which does deals with the GUI)
 # ==
 """
 pass

 def save_user_inputs_to_json(self) -> JsonDict:
 """Saves the user inputs, i.e. the functions params that are editable in the
 (this excludes the params that are set by the links between the functions)""
 pass

 def load_user_inputs_from_json(self, json_data: JsonDict) -> None:
 """Restores the user inputs from a json dict"""
 pass

Architecture

Below is a PlantUML diagram showing the architecture of the fiat_core module. See the

architecture page for the full architecture diagrams.

 def save_graph_composition_to_json(self) -> JsonDict:
 """Saves the graph composition to a json dict.
 Only used when the graph composition is editable.
 """
 pass

 def load_graph_composition_from_json(self, json_data: JsonDict, function_factory
 """Loads the graph composition from a json dict."""
 pass

from fiatlight.fiat_notebook import plantuml_magic
%plantuml_include class_diagrams/fiat_core.puml

fiat_core

«DataType»
AnyDataWithGui

a class to wrap any data with a GUI

_value: DataType | Unspecified | Error
callbacks: AnyDataGuiCallbacks[DataType]

save_to_json() / load_from_json()

«DataType»

FunctionWithGui

Wraps a function with a GUI

constructor(f)
(will fill _inputs_with_gui and _outputs_with_gui,
attempting to guess the types)
invoke()
...

name: str = ""

Linked function
_f_impl: Callable[..., Any] | None = None

Members linked to the function
_inputs_with_gui: List[ParamWithGui[Any]]
_outputs_with_gui: List[OutputWithGui[Any]]

_last_exception_message: Optional[str] = None
_last_exception_traceback: Optional[str] = None
_dirty: bool = True

Behavioral Flags
invoke_async: bool = False
invoke_manually: bool = False
invoke_always_dirty: bool = False

Optional callbacks
internal_state_gui: BoolFunction | None = None
on_heartbeat: BoolFunction | None = None

«DataType»
ParamWithGui

name: str
data_with_gui: AnyDataWithGui[DataType]
default_value: DataType | Unspecified

«DataType»
OutputWithGui

data_with_gui: AnyDataWithGui[DataType]

FunctionNodeLink

src_function_node: FunctionNode
src_output_idx: int
dst_function_node: FunctionNode
dst_input_name: str

FunctionNode

function_with_gui: FunctionWithGui
output_links: list[FunctionNodeLink]
input_links: list[FunctionNodeLink]

FunctionsGraph

A graph of FunctionNodes

functions_nodes
functions_nodes_links

This is the core of fiatlight.
It is a set of classes that can be used to add a GUI
to any data, function or graph of functions.
It does depend on ImGui, but not on
imgui-node-editor.

many 1 or many

several

many

many

DataType
AnyDataGuiCallbacks

a class that stores callbacks for AnyDataWithGui
(most of them are optional)

edit : BoolFunction (custom widgets for edition)
present_custom: VoidFunction (for presentation)
etc.

Fiatlight Kits
Fiatlight offers several kits adapted to different domains.

fiat_image : advanced image widget

fiat_matplotlib : widget to view matplotlib plots (zoomable)

fiat_dataframe : widget to explore pandas dataframes

fiat_implot : widget to explore 1D and 2D numpy arrays with ImPlot

fiat_image: advanced image widget

Fiatlight provides an advanced image viewer and analyzer which enables to zoom, pan, look at pixel

values and sync the zoom across images.

Example

from fiatlight.fiat_kits.fiat_image import fiat_image_attrs_demo
fiat_image_attrs_demo.main()

https://github.com/epezent/implot

Fiat attributes available for the ImageWithGui widget

The image widget provided with fiat_image is extremely customizable. Here is a list of all the

possible customizations options:

In the “show_image” output, the options panel was opened

The “show_image_channels” output shows the image channels, and it zoom/pan is linked

to “show_image”

The “show_image_different_zoom_key” image has a different zoom key, and the

zoom/pan is not linked to “show_image”. It also zoomed at a high-level, so that pixel

values are displayed.

the “show_image_only_display” image is displayed, and cannot be zoomed or panned (the

widget may be resized however)

%%bash
fiatlight gui ImageWithGui

GUI type: ImageWithGui
=======================
 A highly sophisticated GUI for displaying and analysing images. Zoom/Pan, show cha

 Available custom attributes for fiat_image.ImageWithGui:
 --
 +---------------------------------+-----------------+-----------+-----------------
 | Name | Type | Default | Explanation
 +=================================+=================+===========+=================
 | | | | **Main attribute
 +---------------------------------+-----------------+-----------+-----------------
 | only_display | bool | False | Only display the
 | | | | zoom, no pan
 +---------------------------------+-----------------+-----------+-----------------
 | image_display_size | tuple[int, int] | (200, 0) | Initial size of
 | | | | height). One of
 +---------------------------------+-----------------+-----------+-----------------
 | zoom_key | str | z | Key to zoom in t
 | | | | same zoom key wi
 +---------------------------------+-----------------+-----------+-----------------
 | is_color_order_bgr | bool | True | Color order is B
 | | | | uses BGR by defa
 +---------------------------------+-----------------+-----------+-----------------
 | can_resize | bool | True | Can resize the i
 | | | | the bottom right
 +---------------------------------+-----------------+-----------+-----------------
 | | | | **Channels**
 +---------------------------------+-----------------+-----------+-----------------
 | show_channels | bool | False | Show channels
 +---------------------------------+-----------------+-----------+-----------------
 | channel_layout_vertically | bool | False | Layout channels
 +---------------------------------+-----------------+-----------+-----------------
 | | | | **Zoom & Pan**
 +---------------------------------+-----------------+-----------+-----------------
 | pan_with_mouse | bool | True | Pan with mouse
 +---------------------------------+-----------------+-----------+-----------------
 | zoom_with_mouse_wheel | bool | True | Zoom with mouse
 +---------------------------------+-----------------+-----------+-----------------
 | | | | **Info displayed
 +---------------------------------+-----------------+-----------+-----------------
 | show_school_paper_background | bool | True | Show school pape
 | | | | is unzoomed
 +---------------------------------+-----------------+-----------+-----------------
 | show_alpha_channel_checkerboard | bool | True | Show alpha chann
 +---------------------------------+-----------------+-----------+-----------------
 | show_grid | bool | True | Show grid with t
 +---------------------------------+-----------------+-----------+-----------------
 | draw_values_on_zoomed_pixels | bool | True | Draw values on p
 +---------------------------------+-----------------+-----------+-----------------
 | | | | **Info displayed
 +---------------------------------+-----------------+-----------+-----------------
 | show_image_info | bool | True | Show image info,
 +---------------------------------+-----------------+-----------+-----------------

 | show_pixel_info | bool | True | Show pixel info,
 | | | | position under t
 +---------------------------------+-----------------+-----------+-----------------
 | | | | **Control button
 +---------------------------------+-----------------+-----------+-----------------
 | show_zoom_buttons | bool | True | Show zoom button
 +---------------------------------+-----------------+-----------+-----------------
 | show_options_panel | bool | True | Show options pan
 +---------------------------------+-----------------+-----------+-----------------
 | show_options_button | bool | True | Show options but
 +---------------------------------+-----------------+-----------+-----------------
 | show_inspect_button | bool | True | Show the inspect
 | | | | a large version
 | | | | Inspector
 +---------------------------------+-----------------+-----------+-----------------

 Available custom attributes for AnyDataWithGui Generic attributes:
 --
 +----------------+--------+---------------------+---------------------------------
 | Name | Type | Default | Explanation
 +================+========+=====================+=================================
 | | | | **Generic attributes**
 +----------------+--------+---------------------+---------------------------------
 | validate_value | object | None | Function to validate a paramete
 | | | | return DataValidationResult.ok()
 +----------------+--------+---------------------+---------------------------------
 | label | str | | A label for the parameter. If em
 | | | | function parameter name is used
 +----------------+--------+---------------------+---------------------------------
 | tooltip | str | | An optional tooltip to be displa
 +----------------+--------+---------------------+---------------------------------
 | label_color | ImVec4 | ImVec4(0.000000, | The color of the label (will use
 | | | 0.000000, 0.000000, | text color if not provided)
 | | | 1.000000) |
 +----------------+--------+---------------------+---------------------------------

Code to test this GUI type:

```python
import typing
import fiatlight

@fiatlight.with_fiat_attributes(
    #  Main attributes for the image viewer
    union_param__only_display = False,
    union_param__image_display_size = (200, 0),
    union_param__zoom_key = "z",
    union_param__is_color_order_bgr = True,
    union_param__can_resize = True,
    #  Channels
    union_param__show_channels = False,
    union_param__channel_layout_vertically = False,
    #  Zoom & Pan
    union_param__pan_with_mouse = True,



Image types

Fiatlight provides several synonyms for Numpy arrays that denote different types of images. Each

of these types will be displayed by the image widget.

    union_param__zoom_with_mouse_wheel = True,
    #  Info displayed on image
    union_param__show_school_paper_background = True,
    union_param__show_alpha_channel_checkerboard = True,
    union_param__show_grid = True,
    union_param__draw_values_on_zoomed_pixels = True,
    #  Info displayed under the image
    union_param__show_image_info = True,
    union_param__show_pixel_info = True,
    #  Control buttons under the image
    union_param__show_zoom_buttons = True,
    union_param__show_options_panel = True,
    union_param__show_options_button = True,
    union_param__show_inspect_button = True,
    #  Generic attributes
    union_param__validate_value = None,
    union_param__label = "",
    union_param__tooltip = "",
    union_param__label_color = ImVec4(0.000000, 0.000000, 0.000000, 1.000000))
def f(union_param: typing.Union[fiatlight.fiat_kits.fiat_image.image_types.ImageU8_1
    return union_param

fiatlight.run(f)
```

import fiatlight
from fiatlight.fiat_notebook import look_at_code
%look_at_python_file fiat_kits/fiat_image/image_types.py

"""This module defines several types you can use to annotate your functions.
The image types are defined as NewType instances, which are just aliases for numpy a

All those types will be displayed in the GUI as images, using the ImmVision image vi
(https://github.com/pthom/immvision)

Notes:
 - The easiest way to display an image is to use the `Image` type, which is a uni
 or to use the `ImageU8` type, which is a union of all UInt8 image types.
 - any numpy array can be used to create an `Image`, and the viewer will try to d
"""

from typing import Any, NewType
import numpy as np
from typing import Tuple, Union

Define shape types for clarity
ShapeHeightWidth = Tuple[int, int]
ShapeHeightWidthChannels = Tuple[int, int, int]

Define UInt8 as a dtype for numpy arrays
UInt8 = np.dtype[np.uint8]
AnyFloat = np.dtype[np.floating[Any]]

#
UInt8 Images
#
ImageU8 = NewType("ImageU8", np.ndarray[ShapeHeightWidthChannels | ShapeHeightWidt
Type definitions for UInt8 images based on channel count
ImageU8_1 = NewType("ImageU8_1", np.ndarray[ShapeHeightWidth, UInt8])
ImageU8_2 = NewType("ImageU8_2", np.ndarray[ShapeHeightWidthChannels, UInt8])
ImageU8_3 = NewType("ImageU8_3", np.ndarray[ShapeHeightWidthChannels, UInt8])
ImageU8_4 = NewType("ImageU8_4", np.ndarray[ShapeHeightWidthChannels, UInt8])
ImageU8_WithNbChannels = Union[ImageU8_1, ImageU8_2, ImageU8_3, ImageU8_4]
Type definitions based on the roles of the channels
ImageU8_RGB = NewType("ImageU8_RGB", ImageU8_3)
ImageU8_RGBA = NewType("ImageU8_RGBA", ImageU8_4)
ImageU8_BGRA = NewType("ImageU8_BGRA", ImageU8_4)
ImageU8_BGR = NewType("ImageU8_BGR", ImageU8_3)
ImageU8_GRAY = NewType("ImageU8_GRAY", ImageU8_1)
ImageU8_WithChannelsRoles = Union[ImageU8_RGB, ImageU8_RGBA, ImageU8_BGRA, ImageU8_B

Generic type for any 8-bit image
ImageU8 = Union[ImageU8_WithNbChannels, ImageU8_WithChannelsRoles]

#
Float Images
#
Type definitions for float images based on channel count
ImageFloat_1 = NewType("ImageFloat_1", np.ndarray[ShapeHeightWidth, AnyFloat])
ImageFloat_2 = NewType("ImageFloat_2", np.ndarray[ShapeHeightWidthChannels, AnyFloat

`

Source code for the example

ImageFloat_3 = NewType("ImageFloat_3", np.ndarray[ShapeHeightWidthChannels, AnyFloat
ImageFloat_4 = NewType("ImageFloat_4", np.ndarray[ShapeHeightWidthChannels, AnyFloat

Generic type for any float image
ImageFloat = Union[ImageFloat_1, ImageFloat_2, ImageFloat_3, ImageFloat_4]

#
Generic Image Type
#
Image is a union of all image types
Image = Union[ImageU8, ImageFloat]

---------------------------- Register image type factories -----------------------

def _register_image_type_factories() -> None:
 from fiatlight.fiat_togui.gui_registry import gui_factories
 from fiatlight.fiat_kits.fiat_image.image_gui import ImageWithGui

 prefix = "fiatlight.fiat_kits.fiat_image.image_types.Image"
 gui_factories().register_factory_name_start_with(prefix, ImageWithGui)
 gui_factories().register_factory_union(prefix, ImageWithGui)

%look_at_python_file fiat_kits/fiat_image/fiat_image_attrs_demo.py

"""Demo how to set custom presentation attributes for the Image Widget (ImageWithGui

Notes:
 - The custom attributes can be set using the decorator fl.with_fiat_attributes
 - In these examples, we intend to set custom attributes for the output of the
 functions, i.e. the returned value.
 As a consequence, the custom attributes are set in the return__...
 arguments of the decorator.
"""

import fiatlight as fl
from fiatlight.fiat_kits.fiat_image import ImageU8_3
import cv2

Our demo image
demo_image: ImageU8_3 = cv2.imread(fl.demo_assets_dir() + "/images/house.jpg") # ty

A simple function that will use the Image Widget with its default settings.
def show_image(image: ImageU8_3 = demo_image) -> ImageU8_3:
 return image

A function whose output will initially show the channels
Since it does not specify a zoom key,
it will be zoomed and panned together with the image
shown by "show_image"
@fl.with_fiat_attributes(return__show_channels=True)
def show_image_channels(image: ImageU8_3 = demo_image) -> ImageU8_3:
 return image

A function whose output will have a different zoom key:
it can be panned and zoomed, independently of the other images
@fl.with_fiat_attributes(return__zoom_key="other")
def show_image_different_zoom_key(image: ImageU8_3 = demo_image) -> ImageU8_3:
 return image

A function that will use the Image Widget with custom attributes:
- the image is displayed only (it cannot be zoomed or panned,
and the pixel values are not shown)
- the image is displayed with a height of 300 pixels
(the width is automatically calculated)
- the image cannot be resized
@fl.with_fiat_attributes(
 return__only_display=True,
 return__image_display_size=(0, 300),
 return__can_resize=False,
)
def show_image_only_display(image: ImageU8_3 = demo_image) -> ImageU8_3:
 return image

fiat_matplotlib: display matplotlib figures

Fiatlight provides FigureWithGui , a viewer for Matplotlib figures.

Example

Fiat attributes available for the FigureWithGui widget

The FigureWithGui widget is not customizable. However, it can be zoomed by the user and this

setting will be saved.

def main() -> None:
 graph = fl.FunctionsGraph()
 graph.add_function(show_image)
 graph.add_function(show_image_channels)
 graph.add_function(show_image_different_zoom_key)
 graph.add_function(show_image_only_display)

 fl.run(graph, app_name="fiat_image_fiat_attrs_demo")

if __name__ == "__main__":
 main()

from fiatlight.fiat_kits.fiat_matplotlib import demo_matplotlib

demo_matplotlib.main()

Source code for the example

import fiatlight
from fiatlight.fiat_notebook import look_at_code # noqa
%look_at_python_file fiat_kits/fiat_matplotlib/demo_matplotlib.py

"""Interactive Matplotlib Figures with Fiatlight

This example demonstrates several types of matplotlib figures rendered within Fiatli
"""

import matplotlib.pyplot as plt
from matplotlib.figure import Figure
import numpy as np
from enum import Enum
import time
import fiatlight as fl

Initialize the start time
_start_time = time.time()

def time_seconds() -> float:
 """Returns the time elapsed since the start of the application."""
 return time.time() - _start_time

def phase_from_time_seconds(time_: float) -> float:
 """Calculates the phase from the given time."""
 return time_ * 15.0

Set the function to always update
time_seconds.invoke_always_dirty = True # type: ignore

def interactive_sine_wave(freq: float = 1.0, phase: float = 0.0, amplitude: float =
 """Generates an interactive sine wave with adjustable frequency, phase, and ampl
 x = np.linspace(0, 2 * np.pi, 3000)
 y = amplitude * np.sin(2 * np.pi * freq * x + phase)
 fig, ax = plt.subplots()
 ax.plot(x, y)
 ax.set_ylim([-1.5, 1.5]) # Adjust the y-axis limits
 return fig

Set ranges and edit types for the sine wave parameters
fl.add_fiat_attributes(
 interactive_sine_wave,
 freq__range=(0.1, 3),
 phase__range=(-np.pi, np.pi),
 amplitude__range=(0.1, 2),
 freq__edit_type="knob",
 phase__edit_type="knob",
 amplitude__edit_type="knob",
)

class ColorMap(Enum):
 VIRIDIS = "viridis"
 PLASMA = "plasma"
 INFERNO = "inferno"
 MAGMA = "magma"
 CIVIDIS = "cividis"

@fl.with_fiat_attributes(
 mean__range=(-5, 5),
 variance__range=(0.1, 5),
 levels__range=(1, 20),
)
def gaussian_heatmap(
 mean: float = 0, variance: float = 1, colormap: ColorMap = ColorMap.VIRIDIS, lev
) -> Figure:
 """Generates a Gaussian heatmap with adjustable mean, variance, colormap, and nu
 x = y = np.linspace(-5, 5, 100)
 X, Y = np.meshgrid(x, y)
 Z = np.exp(-((X - mean) ** 2 + (Y - mean) ** 2) / (2 * variance))
 fig, ax = plt.subplots()
 contour = ax.contourf(X, Y, Z, levels, cmap=colormap.value)
 fig.colorbar(contour, ax=ax)
 return fig

@fl.with_fiat_attributes(window_size__range=(1, 40))
def data_smoothing(window_size: int = 5) -> Figure:
 """Demonstrates data smoothing using a moving average filter."""
 x = np.linspace(0, 15, 300)
 y = np.sin(x) + np.random.normal(0, 0.1, 300) # Noisy sine wave
 y_smooth = np.convolve(y, np.ones(window_size) / window_size, mode="same")
 fig, ax = plt.subplots()
 ax.plot(x, y, label="Original")
 ax.plot(x, y_smooth, label="Smoothed")
 ax.legend()
 return fig

def interactive_histogram(
 n_bars: int = 10, mu: float = 0, sigma: float = 1, average: float = 500, nb_data
) -> Figure:
 """Generates an interactive histogram with adjustable number of bars, mean, and
 data = np.random.normal(mu, sigma, int(nb_data)) + average
 bins = np.linspace(np.min(data), np.max(data), n_bars)
 fig, ax = plt.subplots()
 ax.hist(data, bins=bins, color="blue", alpha=0.7)
 return fig

Set interactive parameters for the histogram
fl.add_fiat_attributes(
 interactive_histogram,
 n_bars__edit_type="knob",

fiat_dataframe: pandas DataFrame explorer

Fiatlight provides DataFrameWithGui , a viewer for pandas dataframes that allows to sort, and

visualize the data. Composed with the advanced GUI creation capabilities of fiatlight, it can also

filter data.

Example

 n_bars__range=(1, 300),
 mu__edit_type="input",
 mu__range=(-5, 5),
 sigma__edit_type="drag",
 sigma__range=(0.1, 5),
 average__edit_type="slider_float_any_range",
 nb_data__edit_type="slider",
 nb_data__range=(100, 1_000_000),
 nb_data__slider_logarithmic=True,
 nb_data__slider_no_input=True,
)

def main() -> None:
 """Main function to run the Fiatlight application with interactive matplotlib fi
 import fiatlight

 # Create a graph to manage functions and their links
 graph = fiatlight.FunctionsGraph()
 graph.add_function(interactive_sine_wave)
 graph.add_function(gaussian_heatmap)
 graph.add_function(data_smoothing)
 graph.add_function(interactive_histogram)
 graph.add_function(time_seconds)
 graph.add_function(phase_from_time_seconds)
 graph.add_link("time_seconds", "phase_from_time_seconds", "time_")
 graph.add_link("phase_from_time_seconds", "interactive_sine_wave", "phase")
 fiatlight.run(graph, app_name="figure_with_gui_demo")

if __name__ == "__main__":
 main()

from fiatlight.fiat_kits.fiat_dataframe import dataframe_with_gui_demo_titanic
dataframe_with_gui_demo_titanic.main()

By clicking on the magnifier button on top of the dataframe, you can open it in a popup where

sorting options are available. Click on one column (or shift-click on multiple columns) to sort the

data.

dataframe_with_gui_demo_titanic.main()

Fiat attributes available for DataFrameWithGui

Here is a list of all the possible customizations options:

%%bash
fiatlight gui DataFrameWithGui

GUI type: DataFrameWithGui
===========================
 A class to present a pandas DataFrame in the GUI, with pagination and other featu

 Available custom attributes for DataFrameWithGui:
 --
 +------------------------+---------------------+--------------+-------------------
 | Name | Type | Default | Explanation
 +========================+=====================+==============+===================
 | widget_size_em | tuple[float, float] | (50.0, 15.0) | Widget size in em
 +------------------------+---------------------+--------------+-------------------
 | column_widths_em | dict | {} | Dictionary to spec
 | | | | individual columns
 +------------------------+---------------------+--------------+-------------------
 | rows_per_page_node | int | 10 | Number of rows to
 | | | | displayed in a fun
 +------------------------+---------------------+--------------+-------------------
 | rows_per_page_classic | int | 20 | Number of rows to
 | | | | displayed in a pop
 +------------------------+---------------------+--------------+-------------------
 | current_page_start_idx | int | 0 | Index of the first
 | | | | used for paginatio
 +------------------------+---------------------+--------------+-------------------

 Available custom attributes for AnyDataWithGui Generic attributes:
 --
 +----------------+--------+---------------------+---------------------------------
 | Name | Type | Default | Explanation
 +================+========+=====================+=================================
 | | | | **Generic attributes**
 +----------------+--------+---------------------+---------------------------------
 | validate_value | object | None | Function to validate a paramete
 | | | | return DataValidationResult.ok()
 +----------------+--------+---------------------+---------------------------------
 | label | str | | A label for the parameter. If em
 | | | | function parameter name is used
 +----------------+--------+---------------------+---------------------------------
 | tooltip | str | | An optional tooltip to be displa
 +----------------+--------+---------------------+---------------------------------
 | label_color | ImVec4 | ImVec4(0.000000, | The color of the label (will use
 | | | 0.000000, 0.000000, | text color if not provided)
 | | | 1.000000) |
 +----------------+--------+---------------------+---------------------------------

Code to test this GUI type:

```python
import typing
import fiatlight

@fiatlight.with_fiat_attributes(
    dataframe_param__widget_size_em = (50.0, 15.0),
    dataframe_param__column_widths_em = {},



Source code for the example

    dataframe_param__rows_per_page_node = 10,
    dataframe_param__rows_per_page_classic = 20,
    dataframe_param__current_page_start_idx = 0,
    #  Generic attributes
    dataframe_param__validate_value = None,
    dataframe_param__label = "",
    dataframe_param__tooltip = "",
    dataframe_param__label_color = ImVec4(0.000000, 0.000000, 0.000000, 1.000000))
def f(dataframe_param: pandas.core.frame.DataFrame) -> pandas.core.frame.DataFrame:
    return dataframe_param

fiatlight.run(f)
```

import fiatlight
from fiatlight.fiat_notebook import look_at_code # noqa
%look_at_python_file fiat_kits/fiat_dataframe/dataframe_with_gui_demo_titanic.py

import fiatlight as fl
import pandas as pd
from enum import Enum

def make_titanic_df() -> pd.DataFrame:
 # Here, we provide an example data frame to the user,
 # using the Titanic dataset from the Data Science Dojo repository.
 # (widely used in data science tutorials)
 url = "https://raw.githubusercontent.com/datasciencedojo/datasets/master/titanic
 try:
 df = pd.read_csv(url)
 except Exception as e:
 print(f"Error loading sample dataset: {e}")
 df = pd.DataFrame() # Return an empty DataFrame in case of failure
 return df

class Sex(Enum):
 Man = "male"
 Woman = "female"

@fl.with_fiat_attributes(
 # define the custom attributes for the function parameters
 age_min__range=(0, 100),
 age_max__range=(0, 100),
 # define custom attributes for the function output
 # (i.e. the presentation options for the DataFrame)
 return__widget_size_em=(55.0, 15.0),
 return__rows_per_page_node=10,
 return__rows_per_page_popup=20,
 return__column_widths_em={"Name": 5},
)
def show_titanic_db(
 name_query: str = "", sex_query: Sex | None = None, age_min: int | None = None,
) -> pd.DataFrame:
 dataframe = make_titanic_df()
 if dataframe.empty:
 return dataframe

 # filter dataframe
 if name_query:
 dataframe = dataframe[dataframe["Name"].str.contains(name_query, case=False)
 if sex_query:
 dataframe = dataframe[dataframe["Sex"] == sex_query.value]
 if age_min is not None:
 dataframe = dataframe[dataframe["Age"] >= age_min]
 if age_max is not None:
 dataframe = dataframe[dataframe["Age"] <= age_max]

 return dataframe

fiat_implot: widget for 1D and 2D numpy arrays
Fiatlight provides SimplePlotGui , a viewer for numpy arrays that allows to plot 1D and 2D arrays

with ImPlot

Example

def main() -> None:
 fl.run(show_titanic_db, app_name="dataframe_with_gui_demo_titanic")

if __name__ == "__main__":
 main()

ImPlot is a very capable and fast plotting library, not limited to simple 1D and 2D plots. It is

available with Fiatlight and ImGui Bundle (on which Fiatlight is based). See online demo of

ImPlot for more examples.

It is faster than Matplotlib within Fiatlight, and well adapted for real time plots (can refresh

at 120FPS +)

from fiatlight.fiat_kits.fiat_implot import demo_implot

demo_implot.main()

https://github.com/epezent/implot
https://traineq.org/implot_demo/src/implot_demo.html

Fiat attributes available for SimplePlotGui

Here is a list of all the type handled by SimplePlotGui:

Here is a list of all the possible customizations options:

%%bash
fiatlight types FloatMatrix_Dim

+--+------------------------------
| Data Type | Gui Type
+==+==============================
| fiatlight.fiat_kits.fiat_implot.array_types.FloatM | fiatlight.fiat_kits.fiat_impl
| atrix_Dim1 | A GUI for presenting 1D or
| synonym for a 1D ndarray of floats (NewType) | array as a line, scatter (+ s
| | small enough)
+--+------------------------------
| fiatlight.fiat_kits.fiat_implot.array_types.FloatM | fiatlight.fiat_kits.fiat_impl
| atrix_Dim2 | A GUI for presenting 1D or
| synonym for a 2D ndarray of floats (NewType) | array as a line, scatter (+ s
| | small enough)
+--+------------------------------

%%bash
fiatlight gui SimplePlotGui

GUI type: SimplePlotGui
========================
 A GUI for presenting 1D or 2D arrays with ImPlot. Can present the array as a line,

 Available custom attributes for SimplePlotGui:
 --
 +-----------------------+---------------------+--------------+--------------------
 | Name | Type | Default | Explanation
 +=======================+=====================+==============+====================
 | plot_type | str | line | The type of present
 | | | | line, scatter, stai
 +-----------------------+---------------------+--------------+--------------------
 | plot_size_em | tuple[float, float] | (35.0, 20.0) | Size in em units (i
 | | | | height)
 +-----------------------+---------------------+--------------+--------------------
 | auto_fit | bool | True | Auto-scale the plot
 +-----------------------+---------------------+--------------+--------------------
 | small_array_threshold | int | 100 | The threshold for t
 | | | | present scatter, ba
 +-----------------------+---------------------+--------------+--------------------

 Available custom attributes for AnyDataWithGui Generic attributes:
 --
 +----------------+--------+---------------------+---------------------------------
 | Name | Type | Default | Explanation
 +================+========+=====================+=================================
 | | | | **Generic attributes**
 +----------------+--------+---------------------+---------------------------------
 | validate_value | object | None | Function to validate a paramete
 | | | | return DataValidationResult.ok()
 +----------------+--------+---------------------+---------------------------------
 | label | str | | A label for the parameter. If em
 | | | | function parameter name is used
 +----------------+--------+---------------------+---------------------------------
 | tooltip | str | | An optional tooltip to be displa
 +----------------+--------+---------------------+---------------------------------
 | label_color | ImVec4 | ImVec4(0.000000, | The color of the label (will use
 | | | 0.000000, 0.000000, | text color if not provided)
 | | | 1.000000) |
 +----------------+--------+---------------------+---------------------------------

Code to test this GUI type:

```python
import typing
import fiatlight

@fiatlight.with_fiat_attributes(
    floatmatrix_param__plot_type = "line",
    floatmatrix_param__plot_size_em = (35.0, 20.0),
    floatmatrix_param__auto_fit = True,
    floatmatrix_param__small_array_threshold = 100,
    #  Generic attributes



Source code for the example

    floatmatrix_param__validate_value = None,
    floatmatrix_param__label = "",
    floatmatrix_param__tooltip = "",
    floatmatrix_param__label_color = ImVec4(0.000000, 0.000000, 0.000000, 1.000000))
def f(floatmatrix_param: fiatlight.fiat_kits.fiat_implot.array_types.FloatMatrix) ->
    return floatmatrix_param

fiatlight.run(f)
```

import fiatlight
from fiatlight.fiat_notebook import look_at_code # noqa
%look_at_python_file fiat_kits/fiat_implot/demo_implot.py

"""Demonstrates plots generated using ImPlot (https://github.com/epezent/implot). Im

This example demonstrates
- how to create a live sine wave plot with adjustable frequency, phase, and amplitud
 The frequency, phase, and amplitude can be adjusted interactively using knobs.
- how to create a spirograph-like curve using ImPlot.
"""

from fiatlight import fiat_implot
import fiatlight as fl
import numpy as np
import math
import time

_start_time = time.time()

def time_seconds() -> float:
 return time.time() - _start_time

def phase_from_time_seconds(time_: float) -> float:
 return time_ * 15.0

time_seconds.invoke_always_dirty = True # type: ignore

def sin_wave(phase: float, amplitude: float = 1.0) -> fiat_implot.FloatMatrix_Dim2:
 x = np.arange(0, 10, 0.1)
 y = np.sin(x + phase) * amplitude
 r = np.stack((x, y))
 return r # type: ignore

@fl.with_fiat_attributes(
 radius_fixed_circle__range=(0.0, 100.0),
 radius_moving_circle__range=(0.0, 100.0),
 pen_offset__range=(0.0, 100.0),
 nb_turns__range=(0.0, 100.0),
)
def make_spirograph_curve(
 radius_fixed_circle: float = 10.84,
 radius_moving_circle: float = 3.48,
 pen_offset: float = 6.0,
 nb_turns: float = 23.0,
) -> fiat_implot.FloatMatrix_Dim2:
 """a spirograph-like curve"""
 import numpy as np

 t = np.linspace(0, 2 * np.pi * nb_turns, int(500 * nb_turns))
 x = (radius_fixed_circle + radius_moving_circle) * np.cos(t) - pen_offset * np.c
 (radius_fixed_circle + radius_moving_circle) / radius_moving_circle * t

Comparisons w. other prototyping tools
Fiatlight integrates features from various tools into a unified, flexible framework for rapid

prototyping and exploration.

Similar tools dedicated to rapid prototyping, exploration and visualization include:

Scratch: For visual graph creation.

Jupyter: For interactive data exploration.

Python Streamlit & Dash: For easy app creation with integrated GUI elements.

)
 y = (radius_fixed_circle + radius_moving_circle) * np.sin(t) - pen_offset * np.s
 (radius_fixed_circle + radius_moving_circle) / radius_moving_circle * t
)
 return np.array([x, y]) # type: ignore

@fl.with_fiat_attributes(
 x__range=(0.0, 10.0),
 return__plot_type="bars",
 return__auto_fit=False,
 return__plot_size_em=(20, 10),
)
def get_simple_values(x: float) -> fiat_implot.FloatMatrix_Dim1:
 r = []
 for i in range(10):
 r.append(math.cos(x**i))
 return np.array(r) # type: ignore

def main() -> None:
 graph = fl.FunctionsGraph()
 graph.add_function(make_spirograph_curve)
 graph.add_function(get_simple_values)

 graph.add_function(time_seconds)
 graph.add_function(phase_from_time_seconds)
 graph.add_function(sin_wave)
 graph.add_link("time_seconds", "phase_from_time_seconds")
 graph.add_link("phase_from_time_seconds", "sin_wave")

 fl.run(graph, app_name="Demo ImPlot")

if __name__ == "__main__":
 main()

https://scratch.mit.edu/
https://jupyter.org/
https://streamlit.io/
https://plotly.com/dash/

Ryven: For advanced graph creation.

Unity Blueprints: For visual scripting and custom widgets.

Comfy UI: For AI workflow integration.

Pros

Automatic GUI Generation – Introspects functions & structured data to create interfaces.

Live Function State Visualization – View intermediate values at any step.

Error Replay & Debugging – Reproduce issues with the exact inputs that caused them.

State Persistence – Save & restore multiple application states.

High-Performance Rendering – Uses Dear ImGui with C++ and OpenGL for speed.

Runs Locally in the Browser – Can be executed entirely in-browser via Pyodide, requiring

no server.

Seamless Transition to Full Applications – Prototypes can evolve into full Dear ImGui apps,

with easy migration to C++.

Cons

No Server-Side Computation – Cannot rely on a remote server for heavy computation (e.g.,

large AI models like TensorFlow).

An extensive comparison of Fiatlight with streamlit, with dash, and with ipywidgets is available in

the subsections.

Comparison with Streamlit

This page provides a detailed comparison between Fiatlight and Streamlit, highlighting the

strengths and weaknesses of each framework.

Compared to the aforementioned software frameworks, Fiatlight distinguishes itself by:

https://ryven.org/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/
https://github.com/comfyanonymous/ComfyUI

Summary

1. Example used for the comparison:

Display multiple Matplotlib figures and an animated sine wave

2. Performance and Responsiveness:

Streamlit can refresh figures at about 2 FPS, while Fiatlight can update them at 35 FPS (it

could be 120 FPS if using ImPlot instead of MatPlotlib). However, no particular effort was made

in optimizing streamlit workflow.

3. Customization and Extensibility:

Compare how each framework allows customization of widgets and extensibility.

4. State Management:

Evaluate how user inputs and application states are managed and restored.

5. Algorithmic pipelines:

Examine the support for chaining functions and visualizing their interactions.

6. User Experience:

Discuss the overall user experience, including UI manipulation capabilities.

7. Ease of Use and Learning Curve:

Assess the ease of learning and using each framework.

8. Deployment and Accessibility:

Compare the deployment capabilities and accessibility, including online execution.

9. Community and Support:

Look at the available community support and resources.

10. Integration with Data Science Tools:

Analyze how well each framework integrates with popular data science libraries and tools.

Detailed Comparison

1. Example used for the comparison

This comparison is based on the following example, which includes several MatPlotlib figures, along

with an animated sine wave.

Using Fiatlight

See the code of  figure_with_gui_demo.py.

Here it is in action with Fiatlight. The sine wave is animated at 35 FPS.

Using Streamlit

The code for Streamlit was split into two parts:  figures and  animated sine wave.

from fiatlight.fiat_kits.fiat_matplotlib import demo_matplotlib

figure_with_gui_demo.main()

file:///Users/pascal/dvp/OpenSource/ImGuiWork/_Bundle/fiatlight/src/python/fiatlight/doc/_build/html/_downloads/e156301aa5fe8286556f248b03a3e82f/demo_matplotlib.py
file:///Users/pascal/dvp/OpenSource/ImGuiWork/_Bundle/fiatlight/src/python/fiatlight/doc/_build/html/_downloads/27e5d8614377c4ea68b2ead9d8958da7/figure_demo_streamlit.py
file:///Users/pascal/dvp/OpenSource/ImGuiWork/_Bundle/fiatlight/src/python/fiatlight/doc/_build/html/_downloads/d165e47fbbd1f192750bb08fbb261bda/anim_wave_streamlit.py

Here are screenshots of it in action within Streamlit. The sine wave is animated at 2 FPS.

2. Performance and Responsiveness

Fiatlight:

Updates at 35 frames per second, providing real-time interactivity. If using ImPlot instead

of Matplotlib, Fiatlight would reach the artificial limit of 120 FPS.

Streamlit:

Displays at about 2 frames per second. However, no particular effort was made in

optimizing streamlit workflow; and better results may be possible (maybe by switching

from Matplotlib to Plotly).

https://github.com/epezent/implot

3. Customization and Extensibility

Fiatlight:

Allows deep customization of widgets, including advanced editing types and ranges.

Users can define custom widgets and function graphs for extensive flexibility.

Streamlit:

Provides a wide range of built-in widgets and customization options, but may not match

Fiatlight’s specialized functionalities.

4. State Management

Fiatlight:

Automatically saves and restores user inputs, widget placements, and settings. Supports

saving different configurations and restoring them later.

Streamlit:

Requires manual handling of state management. Users need to implement custom

solutions to save and restore states across sessions.

5. Algorithmic pipelines

Fiatlight:

Supports function graphs, enabling chaining of functions and visualization of their inputs

and outputs, simplifying complex workflows.

Streamlit:

Does not natively support function graphs. Users need to manually code function linkages,

which can be more cumbersome.

6. User Experience

Fiatlight:

Offers rich user experience with the ability to resize and move figures, enhancing usability

and flexibility.

Streamlit:

Provides a straightforward interface but lacks advanced UI manipulation features like

resizing and moving figures.

7. Ease of Use and Learning Curve

Fiatlight:

Powerful and flexible but might have a steeper learning curve due to advanced features.

Streamlit:

User-friendly and easy to learn, allowing rapid development and prototyping with minimal

code.

8. Deployment and Accessibility

Fiatlight:

Fiatlight can run inside a Jupyter Notebook, but requires a local environment and lacks

web-based deployment capabilities. Efforts with pyodide are underway but still in

development.

Streamlit:

Easily deployable on the web and compatible with platforms like Google Colab, making it

accessible from anywhere, which is advantageous for collaboration and sharing.

9. Community and Support

Fiatlight:

May not have as extensive a community or support resources as Streamlit.

Streamlit:

Large and active community, extensive documentation, and support resources, beneficial

for new users and those seeking help or examples.

10. Integration with Data Science Tools

Fiatlight:

Can integrate with data science tools but may require more setup and configuration. Its

use of Dear ImGui allows for high-performance graphics and interactive applications,

which can be beneficial for certain data science applications.

Streamlit:

Well-integrated with popular data science libraries and tools, making it a go-to choice for

data scientists and analysts.

Conclusion

Both Fiatlight and Streamlit have their unique advantages.

Fiatlight excels in high-performance applications, offering extensive customization, advanced

interactive features, and sophisticated state management that includes automatic saving and

restoring of user inputs and widget placements. This makes it exceptionally well-suited for

rapid prototyping, as users can quickly iterate on their designs without losing their

configurations. Its support for function graphs simplifies complex workflows, making it a

powerful tool for developing intricate applications.

Streamlit is ideal for users who prioritize ease of use and web-based deployment. It offers a

user-friendly interface that facilitates rapid development and prototyping, especially for data-

driven applications and dashboards. Its seamless integration with popular data science

libraries and web deployment capabilities makes it accessible from anywhere, promoting

collaboration and sharing.

The choice between them depends on the specific needs and preferences of the user or project.

Fiatlight offers a more feature-rich environment for those needing advanced GUI capabilities and

state management, while Streamlit provides a simpler, more accessible solution for data

visualization and web deployment.

Using Streamlit

The code for Streamlit was split into two parts:  figures and  animated sine wave.

file:///Users/pascal/dvp/OpenSource/ImGuiWork/_Bundle/fiatlight/src/python/fiatlight/doc/_build/html/_downloads/27e5d8614377c4ea68b2ead9d8958da7/figure_demo_streamlit.py
file:///Users/pascal/dvp/OpenSource/ImGuiWork/_Bundle/fiatlight/src/python/fiatlight/doc/_build/html/_downloads/d165e47fbbd1f192750bb08fbb261bda/anim_wave_streamlit.py

Here are screenshots of it in action within Streamlit. The sine wave is animated at 2 FPS.

2. Performance and Responsiveness

Fiatlight:

Updates at 35 frames per second, providing real-time interactivity. If using ImPlot instead

of Matplotlib, Fiatlight would reach the artificial limit of 120 FPS.

Streamlit:

Displays at about 2 frames per second. However, no particular effort was made in

optimizing streamlit workflow; and better results may be possible (maybe by switching

from Matplotlib to Plotly).

https://github.com/epezent/implot

3. Customization and Extensibility

Fiatlight:

Allows deep customization of widgets, including advanced editing types and ranges.

Users can define custom widgets and function graphs for extensive flexibility.

Streamlit:

Provides a wide range of built-in widgets and customization options, but may not match

Fiatlight’s specialized functionalities.

4. State Management

Fiatlight:

Automatically saves and restores user inputs, widget placements, and settings. Supports

saving different configurations and restoring them later.

Streamlit:

Requires manual handling of state management. Users need to implement custom

solutions to save and restore states across sessions.

5. Algorithmic pipelines

Fiatlight:

Supports function graphs, enabling chaining of functions and visualization of their inputs

and outputs, simplifying complex workflows.

Streamlit:

Does not natively support function graphs. Users need to manually code function linkages,

which can be more cumbersome.

6. User Experience

Fiatlight:

Offers rich user experience with the ability to resize and move figures, enhancing usability

and flexibility.

Streamlit:

Provides a straightforward interface but lacks advanced UI manipulation features like

resizing and moving figures.

7. Ease of Use and Learning Curve

Fiatlight:

Powerful and flexible but might have a steeper learning curve due to advanced features.

Streamlit:

User-friendly and easy to learn, allowing rapid development and prototyping with minimal

code.

8. Deployment and Accessibility

Fiatlight:

Fiatlight can run inside a Jupyter Notebook, but requires a local environment and lacks

web-based deployment capabilities. Efforts with pyodide are underway but still in

development.

Streamlit:

Easily deployable on the web and compatible with platforms like Google Colab, making it

accessible from anywhere, which is advantageous for collaboration and sharing.

9. Community and Support

Fiatlight:

May not have as extensive a community or support resources as Streamlit.

Streamlit:

Large and active community, extensive documentation, and support resources, beneficial

for new users and those seeking help or examples.

10. Integration with Data Science Tools

Fiatlight:

Can integrate with data science tools but may require more setup and configuration. Its

use of Dear ImGui allows for high-performance graphics and interactive applications,

which can be beneficial for certain data science applications.

Streamlit:

Well-integrated with popular data science libraries and tools, making it a go-to choice for

data scientists and analysts.

Conclusion

Both Fiatlight and Streamlit have their unique advantages.

Fiatlight excels in high-performance applications, offering extensive customization, advanced

interactive features, and sophisticated state management that includes automatic saving and

restoring of user inputs and widget placements. This makes it exceptionally well-suited for

rapid prototyping, as users can quickly iterate on their designs without losing their

configurations. Its support for function graphs simplifies complex workflows, making it a

powerful tool for developing intricate applications.

Streamlit is ideal for users who prioritize ease of use and web-based deployment. It offers a

user-friendly interface that facilitates rapid development and prototyping, especially for data-

driven applications and dashboards. Its seamless integration with popular data science

libraries and web deployment capabilities makes it accessible from anywhere, promoting

collaboration and sharing.

The choice between them depends on the specific needs and preferences of the user or project.

Fiatlight offers a more feature-rich environment for those needing advanced GUI capabilities and

state management, while Streamlit provides a simpler, more accessible solution for data

visualization and web deployment.

Comparison with Dash

This page provides a detailed comparison between Fiatlight and Dash, highlighting the strengths

and weaknesses of each framework.

Summary

1. Example used for the comparison: Display multiple Matplotlib figures and an animated sine

wave

2. Performance and Responsiveness: Dash can update the graph up to 45 FPS on a local

server (using Plotly), but is likely to be slower on a remote server. Fiatlight can update the

graph up to 35 FPS when using Matplotlib. If using ImPlot instead of Matplotlib, Fiatlight would

reach the artificial limit of 120 FPS.

3. Customization, Layout and Extensibility: Compare how each framework allows

customization of widgets and extensibility.

4. State Management: Evaluate how user inputs and application states are managed and

restored.

5. Algorithmic Pipelines: Examine the support for chaining functions and visualizing their

interactions.

6. User Experience: Discuss the overall user experience, including UI manipulation capabilities.

7. Ease of Use and Learning Curve: Assess the ease of learning and using each framework.

8. Deployment and Accessibility: Compare the deployment capabilities and accessibility,

including online execution.

9. Community and Support: Look at the available community support and resources.

10. Integration with Data Science Tools: Analyze how well each framework integrates with

popular data science libraries and tools.

Detailed Comparison

1. Example used for the comparison

This comparison is based on the following example, which includes several Matplotlib figures, along

with an animated sine wave.

Using Fiatlight

See the code of  figure_with_gui_demo.py.

Here it is in action with Fiatlight. The sine wave is animated at 35 FPS (it could be 120 FPS if using

ImPlot instead of MatPlotlib).

https://github.com/epezent/implot
file:///Users/pascal/dvp/OpenSource/ImGuiWork/_Bundle/fiatlight/src/python/fiatlight/doc/_build/html/_downloads/e156301aa5fe8286556f248b03a3e82f/demo_matplotlib.py

Using Dash

A similar application was coded for Dash. Here is its  source code.

from fiatlight.fiat_kits.fiat_matplotlib import demo_matplotlib

figure_with_gui_demo.main()

file:///Users/pascal/dvp/OpenSource/ImGuiWork/_Bundle/fiatlight/src/python/fiatlight/doc/_build/html/_downloads/c1363f927e2e7562d2820c6ece294f2e/figure_demo_dash.py

And below is a screenshot of the Dash app with multiple figures and an animated sine wave.

2. Performance and Responsiveness

Fiatlight:

When using Matplotlib, Fiatlight runs at 35 FPS. When using ImPlot, it runs at the artificial

limit of 120 FPS.

Dash:

Dash can update the graph up to 45 FPS on a local server (using Plotly), but is likely to be

slower on a remote server, because each timer update requires communication via a web

socket.

3. Customization, Layout and Extensibility

Fiatlight:

Allows deep customization of widgets, including advanced editing types and ranges.

Users can define custom widgets and function graphs for extensive flexibility.

Supports advanced layout management, including resizing and moving figures. Arranging

the functions on the screen is as easy as dragging with the mouse. And since those

options are saved, they become part of the final application.

The code for the application occupies 135 Python lines.

Dash:

Offers a wide range of customizable components including Knobs, but may require more

manual coding to achieve highly customized interfaces.

The layout is achieved via standard HTML divs. Changing their size or moving them

requires some adaptation on the Python side.

The code for the application occupies 242 Python lines.

4. State Management

Fiatlight:

Automatically saves and restores user inputs, widget placements, and settings. Supports

saving different configurations and restoring them later.

Dash:

State management is manual and typically involves more code to save and restore states

across sessions.

5. Algorithmic Pipelines

Fiatlight:

Supports function graphs, enabling chaining of functions and visualization of their inputs

and outputs, simplifying complex workflows.

Dash:

Supports callbacks to chain functions but may be less visual and more code-intensive.

6. User Experience

Fiatlight:

Offers a rich user experience with the ability to resize and move figures, enhancing

usability and flexibility.

Dash:

Provides a straightforward interface with interactive components but lacks advanced UI

manipulation features like resizing and moving figures.

7. Ease of Use and Learning Curve

Fiatlight:

Powerful and flexible, but it might require some initial learning since it is a novel

framework. However, the immediate GUI mode is easy to grasp, making it accessible for

new users.

Dash:

User-friendly but can become complex with advanced use cases, requiring a good

understanding of the Dash framework and callbacks.

8. Deployment and Accessibility

Fiatlight:

Fiatlight can run inside a Jupyter Notebook, but requires a local environment and lacks

web-based deployment capabilities. Efforts with pyodide are underway but still in

development.

Dash:

Easily deployable on the web, with built-in support for deploying to cloud platforms like

Heroku and Azure.

9. Community and Support

Fiatlight:

May not have as extensive a community or support resources as Dash.

Dash:

Large and active community, extensive documentation, and support resources, beneficial

for new users and those seeking help or examples.

10. Integration with Data Science Tools

Fiatlight:

Can integrate with data science tools but may require more setup and configuration. Its

use of Dear ImGui allows for high-performance graphics and interactive applications,

which can be beneficial for certain data science applications.

Dash:

Well-integrated with popular data science libraries and tools, making it a go-to choice for

data scientists and analysts.

Conclusion

Both Fiatlight and Dash have their unique advantages.

Fiatlight excels in high-performance applications, offering extensive customization, advanced

interactive features, and sophisticated state management that includes automatic saving and

restoring of user inputs and widget placements. This makes it exceptionally well-suited for

rapid prototyping, as users can quickly iterate on their designs without losing their

configurations. Its support for function graphs simplifies complex workflows, making it a

powerful tool for developing creative applications.

Dash is ideal for users who prioritize building interactive dashboards and data visualization

applications with ease of deployment. It offers a user-friendly interface that facilitates rapid

development and deployment, especially for data-driven applications. Its seamless integration

with popular data science libraries and robust web deployment capabilities make it accessible

and powerful for building analytical web applications.

The choice between them depends on the specific needs and preferences of the user or project.

Fiatlight offers a more feature-rich environment for those needing advanced GUI capabilities and

state management, while Dash provides a robust solution for building and deploying data-driven

dashboards and applications.

Comparison with Jupyter Lab and ipywidgets

This page provides a detailed comparison between Fiatlight and Jupyter Lab + ipywidgets,

highlighting the strengths and weaknesses of each framework.

Summary

1. Example used for the comparison: Display multiple Matplotlib figures and an animated sine

wave

2. Performance and Responsiveness: Compare the performances of both frameworks on live

and static figures.

3. Customization, Layout and Extensibility: Compare how each framework allows

customization of widgets and extensibility.

4. State Management: Evaluate how user inputs and application states are managed and

restored.

5. Algorithmic Pipelines: Examine the support for chaining functions and visualizing their

interactions.

6. User Experience: Discuss the overall user experience, including UI manipulation capabilities.

7. Ease of Use and Learning Curve: Assess the ease of learning and using each framework.

8. Deployment and Accessibility: Compare the deployment capabilities and accessibility,

including online execution.

9. Community and Support: Look at the available community support and resources.

10. Integration with Data Science Tools: Analyze how well each framework integrates with

popular data science libraries and tools.

Detailed Comparison

1. Example used for the comparison

This comparison is based on the following example, which includes several Matplotlib figures, along

with an animated sine wave.

Using Fiatlight

See the code of  figure_with_gui_demo.py.

Here it is in action with Fiatlight. The sine wave is animated at 35 FPS (it could be 120 FPS if using

ImPlot instead of MatPlotlib).

Using ipywidgets / Jupyter Lab

A similar demo was created using Jupyter Lab and ipywidgets. It is available in this notebook.

2. Performance and Responsiveness

It is surprisingly difficult to create live figures in Jupyter Lab. Also, while a figure is being updated,

widgets will not transmit new values to python.

An animated figure can be created by updating a figure in a loop inside a cell. The refresh rate

using Matplotlib is about 1 FPS, and much higher when using ProgressPlot . However, the user

has to wait until the cell has finished executing.

from fiatlight.fiat_kits.fiat_matplotlib import demo_matplotlib

figure_with_gui_demo.main()

file:///Users/pascal/dvp/OpenSource/ImGuiWork/_Bundle/fiatlight/src/python/fiatlight/doc/_build/html/_downloads/e156301aa5fe8286556f248b03a3e82f/demo_matplotlib.py

Fiatlight can update the graph up to 35 FPS when using Matplotlib. If using ImPlot instead of

Matplotlib, Fiatlight would reach the artificial limit of 120 FPS. The updates are done

asynchronously and all the other widgets remain active.

3. Customization, Layout and Extensibility

Fiatlight:

Allows deep customization of widgets, including advanced editing types and ranges.

Users can define custom widgets and function graphs for extensive flexibility.

Supports advanced layout management, including resizing and moving figures. Arranging

the functions on the screen is as easy as dragging with the mouse. Since these options are

saved, they become part of the final application.

The code for the application occupies 135 Python lines.

Jupyter / ipywidgets:

Offers a variety of customizable components, including sliders, checkboxes, dropdowns,

and text inputs. Users can create interactive widgets that integrate seamlessly with

Jupyter notebooks.

The layout is limited to what is possible inside a notebook, but you can use ipywidgets ’s

HBox , VBox , and other layout widgets to organize components. However, it lacks the

advanced layout management features like resizing and moving figures within the

notebook interface.

The code for the application occupies 142 Python lines.

4. State Management

Fiatlight:

Automatically saves and restores user inputs, widget placements, and settings. Supports

saving different configurations and restoring them later.

Jupyter / ipywidgets:

State management is manual and typically involves more code to save and restore states

across sessions.

5. Algorithmic Pipelines

https://github.com/epezent/implot

Fiatlight:

Supports function graphs, enabling chaining of functions and visualization of their inputs

and outputs, simplifying complex workflows.

Jupyter / ipywidgets:

Supports sequential and interactive cell execution but lacks a native function graph

feature. While users can manually code function linkages and interactions, it does not offer

the same visual pipeline management as Fiatlight.

6. User Experience

Fiatlight:

Offers a rich user experience with the ability to resize and move figures, enhancing

usability and flexibility.

Jupyter / ipywidgets:

offers a basic user experience for the final user. Note: the appearance of the ipywidgets is

not restored when reopening a notebook: the user has to re-run the cells to get the

widgets back.

7. Ease of Use and Learning Curve

Fiatlight:

Powerful and flexible, but it might require some initial learning since it is a novel

framework. However, the immediate GUI mode is easy to grasp, making it accessible for

new users.

Jupyter / ipywidgets:

offers a truly great experience for the developer, in terms of ease and speed of

development.

8. Deployment and Accessibility

Fiatlight:

Fiatlight can run inside a Jupyter Notebook, but requires a local environment and lacks

web-based deployment capabilities. Efforts with pyodide are underway but still in

development.

Jupyter / ipywidgets:

deployable locally and on almost any cloud provider (Google Colab, Binder, etc.)

9. Community and Support

Fiatlight:

May not have as extensive a community or support resources as more established

frameworks, but it benefits from the communities of the libraries it builds upon, like Dear

ImGui, Hello ImGui, and ImGui Bundle.

Jupyter / ipywidgets:

Large and active community, extensive documentation, and support resources, beneficial

for new users and those seeking help or examples. Many resources are available for

troubleshooting and expanding functionality.

10. Integration with Data Science Tools

Fiatlight:

Can integrate with data science tools but may require more setup and configuration. Its

use of Dear ImGui allows for high-performance graphics and interactive applications,

which can be beneficial for certain data science applications.

Jupyter / ipywidgets:

Very mature integration with popular data science libraries and tools such as NumPy,

pandas, scikit-learn, and more. It is widely used in the data science community, making it a

go-to choice for data-driven research and analysis.

Conclusion

Both Fiatlight and Jupyter Lab with ipywidgets have their unique advantages.

Fiatlight excels in high-performance applications, offering extensive customization, advanced

interactive features, and sophisticated state management that includes automatic saving and

restoring of user inputs and widget placements. This makes it exceptionally well-suited for

rapid prototyping, as users can quickly iterate on their designs without losing their

configurations. Its support for function graphs simplifies complex workflows, making it a

powerful tool for developing creative applications.

Jupyter Lab with ipywidgets is ideal for users who prioritize ease of use, rapid development,

and integration with data science tools. It offers a user-friendly interface that facilitates

interactive data analysis and visualization. The extensive community support, along with its

deployment capabilities on platforms like Google Colab and Binder, make it highly accessible

and powerful for educational and research purposes.

The choice between them depends on the specific needs and preferences of the user or project.

Fiatlight offers a more feature-rich environment for those needing advanced GUI capabilities and

state management, while Jupyter Lab with ipywidgets provides a robust solution for interactive

data science and educational applications.

